Sound Radiation from an Open End of the Wedge-Shaped Waveguide. II. Analysis of the Numerical Results

Author(s):  
V. T. Matsypura
Author(s):  
Lionel Oddo ◽  
Bernard Laulagnet ◽  
Jean-louis Guyader

Abstract The aim of this paper is to study the sound radiation by a cylindrical shell internally coupled with mechanical structures of high modal density. The model is based on a mobility technique. The numerical results show a smoothing of the cylinder’s velocity and radiation spectra associated with an increase of the apparent damping. The use of the S.E.A. method allows us to calculate an additional structural damping of the shell, equivalent to the effect of the internal structures.


1999 ◽  
Vol 121 (2) ◽  
pp. 197-203 ◽  
Author(s):  
S. F. Wu ◽  
Z. Zhou

This paper presents an extended Kirchhoff integral formulation for predicting sound radiation from an arbitrarily shaped vibrating structure moving along an infinite baffle. In deriving this formulation, the effect of sound reflection from the baffle is taken into account by using the image source theory. Moreover, the effect of source convection motion and that of motion-induced fluid-structure interaction at the interface on the resulting acoustic pressure field are considered. The formulation thus derived is used to calculate sound radiation from a simplified vehicle model cruising along a solid ground at constant speeds. Since analytical and benchmark numerical solutions for an arbitrarily shaped vibrating object in motion are not available, validations of numerical results are made with respect to those of a point source. Next, sound radiation from a full-size vehicle is simulated. For simplicity, the vehicle is assumed to be made of a shell-type structure and excited by harmonic forces acting on its four tires. Vibration responses subject to these excitations are calculated using finite element method (FEM) with HyperMesh® version 2.0 as pre- and post-processors. Once the normal component of the surface velocity is specified, the radiated acoustic pressure fields are determined using boundary element method (BEM). Numerical results show that the effect of source convection motion enhances sound radiation in the forward direction, but reduces that in the rearward direction. Changes in the resulting sound pressure fields become obvious when the Mach number exceeds 0.1, or equivalently, when a vehicle cruises at 70 mph or higher.


Author(s):  
Dawei Zhu ◽  
Xiuchang Huang ◽  
Yu wang ◽  
Feng Xiao ◽  
Hongxing Hua

This paper presents experimental and numerical investigation into the underwater sound radiation characteristics of a free-floating stiffened metal box covered with three different kinds of covering layers and subjected to mechanical excitation. One box is bare while the other three are, respectively, covered with solid covering layers, chiral covering layers, and chiral covering layers filled with expanded polystyrene (EPS) foams. The equivalent elastic modulus of chiral covering layer is obtained by the homogenization theory. The finite element method and boundary element method are used to calculate the underwater sound pressure. The measured and numerical results are illustrated and the sound insulation mechanisms of three covering layers are discussed. The measured results agree with the numerical results well. The covering layers can obviously reduce the underwater sound radiation of floating structures. Compared with the solid covering layer, the chiral covering layer is less effective in suppressing the sound radiation in the low-frequency range but more effective in the medium- and high-frequency range. The chiral covering layer filled with EPS foams shows the best performance, which is more effective in suppressing the sound radiation both in the low-frequency range and in the medium-frequency range. The EPS foams have a high contribution to the added damping of the chiral covering layer.


1993 ◽  
Vol 115 (3) ◽  
pp. 324-331 ◽  
Author(s):  
S. F. Wu ◽  
Z. Wang

This paper presents numerical results of sound radiation from vibrating cylinders in rectilinear motion at constant subsonic speeds by using the extended Kirchhoff integral formulations recently derived by Wu and Akay (1992). In particular, the effects of the interaction between the turbulent stress field and the vibrating surface in motion are examined. Numerical results demonstrate that this interaction is significant in the near-field when the dimensionless frequency ka > 2 and the dimensionless source translational speed M > 0.1. If this interaction is completely neglected, the predicted acoustic pressure is underestimated by as much as 10 to 20 percent in the near field. The effects of this interaction, however, decrease in the far-field. The effects of surface translational motion on the resulting sound radiation are also examined. It is found that the surface translational motion has a significant effect on the resulting sound generation in both near- and far-fields. The amplitude of the acoustic pressure is approximately doubled in the forward direction when ka > 2 and M > 0.2, which corresponds to at least a 5 dB increase in the SPL value.


2020 ◽  
Vol 14 (4) ◽  
pp. 7369-7378
Author(s):  
Ky-Quang Pham ◽  
Xuan-Truong Le ◽  
Cong-Truong Dinh

Splitter blades located between stator blades in a single-stage axial compressor were proposed and investigated in this work to find their effects on aerodynamic performance and operating stability. Aerodynamic performance of the compressor was evaluated using three-dimensional Reynolds-averaged Navier-Stokes equations using the k-e turbulence model with a scalable wall function. The numerical results for the typical performance parameters without stator splitter blades were validated in comparison with experimental data. The numerical results of a parametric study using four geometric parameters (chord length, coverage angle, height and position) of the stator splitter blades showed that the operational stability of the single-stage axial compressor enhances remarkably using the stator splitter blades. The splitters were effective in suppressing flow separation in the stator domain of the compressor at near-stall condition which affects considerably the aerodynamic performance of the compressor.


1996 ◽  
Vol 18 (4) ◽  
pp. 14-22
Author(s):  
Vu Khac Bay

Investigation of the elastic state of curve beam system had been considered in [3]. In this paper the elastic-plastic state of curve beam system in the form of cylindrical shell is analyzed by the elastic solution method. Numerical results of the problem and conclusion are given.


Sign in / Sign up

Export Citation Format

Share Document