translational speed
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 24)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 9 ◽  
Author(s):  
Lu Liu ◽  
Yuqing Wang ◽  
Hui Wang

In this study, the performance of three exponential decay models in estimating intensity change of tropical cyclones (TCs) after landfall over China is evaluated based on the best-track TC data during 1980–2018. Results indicate that the three models evaluated can reproduce the weakening trend of TCs after landfall, but two of them (M1 and M2) tend to overestimate TC intensity and one (M3) tends to overestimate TC intensity in the first 12 h and underestimate TC intensity afterwards. M2 has the best performance with the smallest errors among the three models within 24 h after landfall. M3 has better performance than M1 in the first 20 h after landfall, but its errors increase largely afterwards. M1 and M2 show systematic positive biases in the southeastern China likely due to the fact that they have not explicitly included any topographic effect. M3 has better performance in the southeastern China, where it was originally attempted, but shows negative biases in the eastern China. The relative contributions of different factors, including landfall intensity, translational speed, 850-hPa moist static energy, and topography, to model errors are examined based on classification analyses. Results indicate that the landfall intensity contributes about 18%, translational speed, moist static energy and topography contribute equally about 15% to the model errors. It is strongly suggested that the TC characteristics and the time-dependent decay constant determined by environmental conditions, topography and land cover properties, should be considered in a good exponential decay model of TC weakening after landfall.


Author(s):  
S. Ya. Davydov ◽  
V. N. Makarov ◽  
N. V. Makarov

Variants of pneumatic transport with temperature data of the material are given. Methods for protecting the container from thermal heating are listed. An unloading device for cargo containers for pipeline transport of hot bulk materials has been developed. The proposed system of two integral equations will make it possible to calculate with sufficient accuracy the required compressed air pressure, geometric parameters of aerodynamic ridges for a given length of the unloading section of rotating containers and their translational speed. The presence of aerodynamic ridges will reduce the loss of energy from friction when moving containers in a spiral.


Author(s):  
Saurav Dey Shuvo

Tropical disturbances and cyclones are regularly formed at the Bay of Bengal basin. There are some common traits in them, albeit each one of them is unique. Discerning climatology for the basic features of any tropical cyclone is useful in numerous ways. This research has attempted to find a climatology for frequency, life period, energy, and speed for the tropical cyclones formed at the Bay of Bengal over a period of 31 years – from 1990 to 2020. The results elicit that there are marked changes in these aforementioned features. The total frequency, accumulated duration, and combined energy have escalated over the years. To be precise, these changes have taken effect more rigorously for the Post-monsoonal tropical cyclones. The overall translational speed has slightly diminished in recent years, except for the translational speed of cyclones formed during Pre-monsoon. These changes will have major ramifications on the lives and livelihoods of people, more so for those living in coastal areas. Hence, necessary actions are required to cut the probable losses and damages. The Dhaka University Journal of Earth and Environmental Sciences, Vol. 10(1), 2021, P 23-31


2021 ◽  
Vol 20 (5) ◽  
pp. 383-389
Author(s):  
A. S. Ivanov ◽  
M. S. Puzyrev ◽  
E. M. Chikishev

One of the main problems in the design of agricultural machines, including tillage machines, is to ensure the optimal energy intensity of various technological operations. The design, kinematic and technological parameters of rotary tillage machines have a significant impact on the indicators of the energy intensity of the process and the quality of tillage. These parameters include the diameter of the operating body of the agricultural machine, the angular speed and rotational speed of the disks, the number of cutting elements, the translational speed of the operating body, the height of the ridge formed during soil cultivation, the thickness of the cut chips. An important agrotechnical parameter of a rotary tillage machine is the ridging of the furrow bottom. The height of the ridges formed should not be less than 20 % of the depth of the cultivated soil. Currently, in order to ensure the required height of the ridges in the designs of rotary machines, there are a number of restrictions that determine the operating mode and parameters of the units. The degree of influence of the parameters of the developed operating body and the energy consumption on the quality of tillage has been assessed in the process of the research. The experiments have been carried out on an installation that included an operating body, a power unit, control and instrumentation equipment. As the power section, AC motors with a phase rotor were used, the power of which was 0.75 and 1.50 kW, and the speed of rotation was 920, 1500 and 3000 rpm. The parameters have been set that allow to reduce the energy consumption for tillage by 11–17 %, compared to existing machines, and ensure the alignment of the furrow bottom by up to 80 %.


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1032
Author(s):  
Wei Zhang

Changes in the translational speed of tropical cyclones (e.g., sluggish tropical cyclones) are associated with extreme precipitation and flash flooding. However, it is still unclear regarding the spatial and temporal variability of extreme tropical cyclone translation events in the North Atlantic and underlying large-scale drivers. This work finds that the frequencies of extreme fast- and slow-translation events of Atlantic tropical cyclones exhibited a significant rising trend during 1980–2019. The extreme fast-translation events of Atlantic tropical cyclones are primarily located in the northern part of the North Atlantic, while the extreme slow-translation events are located more equatorward. There is a significant rising trend in the frequency of extreme slow-translation events over ocean with no trend over land. However, there is a significant rising trend in the frequency of extreme fast-translation events over ocean and over land. The extreme slow-translation events are associated with a strong high-pressure system in the continental United States (U.S.). By contrast, the extreme fast-translation events are related to a low-pressure system across most of the continental U.S. that leads to westerly steering flow that enhances tropical cyclone movement. This study suggests that it might be useful to separate tropical cyclone events into fast-moving and slow-moving groups when examining the translational speed of North Atlantic tropical cyclones, instead of examining regional or global mean translational speed.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 802
Author(s):  
Puhua Tang ◽  
Liang Liang ◽  
Zhiming Guo ◽  
Yu Liu ◽  
Guanyu Hu

Magnetically controlled capsule robots are predominantly used in the diagnosis and treatment of the human gastrointestinal tract. In this study, based on the permanent magnet method, magnetic driving and fluid measurement systems for in-pipe capsule robots were established. Using computational fluid dynamics (CFD) and particle image velocimetry (PIV), the fluid velocity and vorticity in the pipe of the capsule robot were calculated and measured. The running characteristics of the capsule robot were numerically analyzed in the curved pipe and the peristaltic flow. Furthermore, the range and variance method of orthogonal design was used to analyze the influence of four typical parameters (namely, pipe diameter, robotic translational speed, robotic rotational speed, and fluid viscosity) on the three operating performance indicators of the capsule robot (namely, the forward resistance of the robot, fluid turbulent intensity near the robot, and maximum fluid pressure to the pipe wall). In this paper, the relative magnitude and significance of the influence of each typical parameter on different performance indicators of the robot are presented. According to the different performance requirements of the robot, the different four parameter combinations are optimized. It is hoped that this work provides a reference for the selection of the appropriate mucus, translational speed, and rotational speed of the robot when it is working in pipes with different diameters.


Author(s):  
I.-I. Lin ◽  
Robert F. Rogers ◽  
Hsiao-Ching Huang ◽  
Yi-Chun Liao ◽  
Derrick Herndon ◽  
...  

AbstractDevastating Japan in October 2019, Supertyphoon (STY) Hagibis was an important typhoon in the history of the Pacific. A striking feature of Hagibis was its explosive RI (rapid intensification). In 24 h, Hagibis intensified by 100 kt, making it one of the fastest-intensifying typhoons ever observed. After RI, Hagibis’s intensification stalled. Using the current typhoon intensity record holder, i.e., STY Haiyan (2013), as a benchmark, this work explores the intensity evolution differences of these 2 high-impact STYs.We found that the extremely high pre-storm sea surface temperature reaching 30.5°C, deep/warm pre-storm ocean heat content reaching 160 kJ cm−2, fast forward storm motion of ~8 ms−1, small during-storm ocean cooling effect of ~ 0.5C, significant thunderstorm activity at its center, and rapid eyewall contraction were all important contributors to Hagibis’s impressive intensification. There was 36% more air-sea flux for Hagibis’s RI than for Haiyan’s.After its spectacular RI, Hagibis’s intensification stopped, despite favorable environments. Haiyan, by contrast, continued to intensify, reaching its record-breaking intensity of 170 kt. A key finding here is the multiple pathways that storm size affected the intensity evolution for both typhoons. After RI, Hagibis experienced a major size expansion, becoming the largest typhoon on record in the Pacific. This size enlargement, combined with a reduction in storm translational speed, induced stronger ocean cooling that reduced ocean flux and hindered intensification. The large storm size also contributed to slower eyewall replacement cycles (ERCs), which prolonged the negative impact of the ERC on intensification.


2021 ◽  
pp. 77-82
Author(s):  
Alexey Semenovich Dorokhov ◽  
Alexey Viktorovich Sibirev ◽  
Alexander Gennadievich Aksenov

The article presents the design of the disc-seeding organ and the opener of the machine for planting onion sets. They are described the methodology and the results of comparative studies to determine the quality indicators of the work of the closing working bodies of the machine for planting onion sets. The results of the comparative laboratory studies of the embedding working bodies of the machine for planting onion sets showed that the disc embedding bodies provide higher performance indicators than the opener with installed embedding elements made in the form of a hiller in the investigated range of values of the translational speed of movement and the center distance between the embedding elements of sealing organs by 1,7% on average.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lauren M. McKinnon ◽  
Justin B. Miller ◽  
Michael F. Whiting ◽  
John S. K. Kauwe ◽  
Perry G. Ridge

AbstractRamp sequences increase translational speed and accuracy when rare, slowly-translated codons are found at the beginnings of genes. Here, the results of the first analysis of ramp sequences in a phylogenetic construct are presented. Ramp sequences were compared from 247 vertebrates (114 Mammalian and 133 non-mammalian), where the presence and absence of ramp sequences was analyzed as a binary character in a parsimony and maximum likelihood framework. Additionally, ramp sequences were mapped to the Open Tree of Life synthetic tree to determine the number of parallelisms and reversals that occurred, and those results were compared to random permutations. Parsimony and maximum likelihood analyses of the presence and absence of ramp sequences recovered phylogenies that are highly congruent with established phylogenies. Additionally, 81% of vertebrate mammalian ramps and 81.2% of other vertebrate ramps had less parallelisms and reversals than the mean from 1000 randomly permuted trees. A chi-square analysis of completely orthologous ramp sequences resulted in a p-value < 0.001 as compared to random chance. Ramp sequences recover comparable phylogenies as other phylogenomic methods. Although not all ramp sequences appear to have a phylogenetic signal, more ramp sequences track speciation than expected by random chance. Therefore, ramp sequences may be used in conjunction with other phylogenomic approaches if many orthologs are taken into account. However, phylogenomic methods utilizing few orthologs should be cautious in incorporating ramp sequences because individual ramp sequences may provide conflicting signals.


Sign in / Sign up

Export Citation Format

Share Document