HYBRID MORI-TANAKA/FINITE ELEMENT METHOD IN HOMOGENIZATION OF COMPOSITE MATERIALS WITH VARIOUS REINFORCEMENT SHAPE AND ORIENTATION

Author(s):  
Witold Ogierman
Author(s):  
Andrew W. Hulton ◽  
Paul V. Cavallaro

Fiber reinforced polymer (FRP) composites have been used as a substitute for more conventional materials in a wide range of applications, including in the aerospace, defense, and auto industries. Due to the widespread availability of measurement techniques, experimental testing of composite materials has outpaced the computational modeling ability of such complicated materials. With advancements in computational physics-based modeling (PBM) such as the finite element method (FEM), strides can be made to reduce the efforts required in building and testing future composite structures. In this work, the extended finite element method (XFEM) is implemented to model fracture of composite materials under quasistatic loading. XFEM is applied to a three-dimensional (3D) computational model of a carbon fiber/epoxy composite cylinder, in half symmetry, that is subjected to lateral compression between two flat plates. Independent material properties are instituted for each composite layer, depending on individual layer orientation. The crack path produced by the analytical results is compared to experimental testing of lateral compression of a composite cylinder. Fracture site initiation and growth path are consistent in both the experimental and computational results.


2009 ◽  
Vol 424 ◽  
pp. 113-119 ◽  
Author(s):  
Jerome Muehlhause ◽  
Sven Gall ◽  
Sören Müller

Extrusion of composite materials can offer big advantages. In this work the manufacturing of a hybrid metal profile in a single production step was investigated. A porthole die was used, thus producing profiles with extrusion seams. Along the seams a material mix up was visible. The extrusion process was simulated with the Finite Element Method to investigate the material flow in die and welding chamber in order to understand the cause for the defects at the seams.


2017 ◽  
Vol 176 ◽  
pp. 790-802 ◽  
Author(s):  
Nagaraja Shetty ◽  
S.M. Shahabaz ◽  
S.S. Sharma ◽  
S. Divakara Shetty

2013 ◽  
Vol 11 (4) ◽  
Author(s):  
Marco Buck ◽  
Oleg Iliev ◽  
Heiko Andrä

AbstractWe extend the multiscale finite element method (MsFEM) as formulated by Hou and Wu in [Hou T.Y., Wu X.-H., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 1997, 134(1), 169–189] to the PDE system of linear elasticity. The application, motivated by the multiscale analysis of highly heterogeneous composite materials, is twofold. Resolving the heterogeneities on the finest scale, we utilize the linear MsFEM basis for the construction of robust coarse spaces in the context of two-level overlapping domain decomposition preconditioners. We motivate and explain the construction and show that the constructed multiscale coarse space contains all the rigid body modes. Under the assumption that the material jumps are isolated, that is they occur only in the interior of the coarse grid elements, our numerical experiments show uniform convergence rates independent of the contrast in Young’s modulus within the heterogeneous material. Elsewise, if no restrictions on the position of the high coefficient inclusions are imposed, robustness cannot be guaranteed any more. These results justify expectations to obtain coefficient-explicit condition number bounds for the PDE system of linear elasticity similar to existing ones for scalar elliptic PDEs as given in the work of Graham, Lechner and Scheichl [Graham I.G., Lechner P.O., Scheichl R., Domain decomposition for multiscale PDEs, Numer. Math., 2007, 106(4), 589–626]. Furthermore, we numerically observe the properties of the MsFEM coarse space for linear elasticity in an upscaling framework. Therefore, we present experimental results showing the approximation errors of the multiscale coarse space w.r.t. the fine-scale solution.


Sign in / Sign up

Export Citation Format

Share Document