THREE-DIMENSIONAL MODEL FOR HEAT AND MASS TRANSFER DURING CONVECTIVE DRYING OF WOOD WITH MICROWAVE HEATING

2018 ◽  
Vol 21 (10) ◽  
pp. 877-886 ◽  
Author(s):  
Aleksandar Dj. Dedic ◽  
Srdjan V. Svrzic ◽  
Jelena N. Janevski ◽  
Branislav Stojanovic ◽  
Milan Dj. Milenkovic
2003 ◽  
Vol 21 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Aleksandar Dj. Dedic ◽  
Arun S. Mujumdar ◽  
Dimitrije K. Voronjec

2008 ◽  
Vol 5 (26) ◽  
pp. 1067-1075 ◽  
Author(s):  
G Coppola ◽  
C Caro

Arterial geometry is commonly non-planar and associated with swirling blood flow. In this study, we examine the effect of arterial three-dimensionality on the distribution of wall shear stress (WSS) and the mass transfer of oxygen from the blood to the vessel wall in a U-bend, by modelling the blood vessels as either cylindrical or helical conduits. The results show that under physiological flow conditions, three-dimensionality can reduce both the range and extent of low WSS regions and substantially increase oxygen flux through the walls. The Sherwood number and WSS distributions between the three-dimensional helical model and a human coronary artery show remarkable qualitative agreement, implying that coronary arteries may potentially be described with a relatively simple idealized three-dimensional model, characterized by a small number of well-defined geometric parameters. The flow pattern downstream of a planar bend results in separation of the Sh number and WSS effects, a finding that implies means of investigating them individually.


Author(s):  
V. A. Sychevskii

A calculation of the technological process of lumber drying in convection drying chamber of periodic action is presented. For this purpose, a three-dimensional geometric model of a drying chamber with a lumber pile is developed. A physico-mathematical model describing the processes of heat and mass transfer both in the drying agent and in the stack is presented. The three-dimensional geometry of the problem was taken into account by using the Ansys Fluent package. The process of mass transfer in wood was described on the basis of User-Defined Function and User-Defined Scalar. The result of calculation of a specific technological regime of drying of stack from pine sawn timber is given, which allowed finding detailed spatial distributions and temporary changes of the temperature and humidity fields for the drying agent and wood. On their basis, graphs of the time variation of the mean values are plotted. The nonlinearity and interrelationship of the processes of heat and mass transfer in a convective drying chamber leads to unsteadiness of the drying process. So, during the warm-up stage, it is not possible to avoid moisture removal from the lumber. At the drying stages, the unsteadiness leads to an oscillatory character of changes of the temperature, the mass fraction of vapour and the relative humidity of air in the gaps between the wood boards at the intensive heat input. Therefore, it is necessary to take additional procedures to keep the drying agent parameters constant at the drying stages. The obtained results can be used for the design of drying chambers and the development of drying regimes of lumber based on the mathematical modeling and computational experiment.


2018 ◽  
Vol 224 ◽  
pp. 04027 ◽  
Author(s):  
Rimma Tukaeva ◽  
Vitalliy Afanasenko ◽  
Petr Kulakov

The main elements of most mass-transfer columns of industrial enterprises are contact trays which are formed by various details inside the apparatus. The dimensions of the details are standardized and regulated by regulatory documents. under modern conditions of equipment designing it is necessary to develop three-dimensional model of typical assembly units, that is a very time-consuming task. The article considers the way to improve the design efficiency by automation of the process of standard mass-transfer valve tray model development in Kompas 3D system with MySQL application.


Skull Base ◽  
2008 ◽  
Vol 18 (S 01) ◽  
Author(s):  
Akio Morita ◽  
Toshikazu Kimura ◽  
Shigeo Sora ◽  
Kengo Nishimura ◽  
Hisayuki Sugiyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document