UNSTEADY MAGNETOHYDRODYNAMIC OSCILLATORY FLOW AND HEAT TRANSFER ANALYSIS OF A VISCOUS FLUID IN A POROUS CHANNEL FILLED WITH A SATURATED POROUS MEDIUM

2010 ◽  
Vol 13 (6) ◽  
pp. 573-577 ◽  
Author(s):  
Ahmer Mehmood ◽  
Asif Ali ◽  
Tahir Mahmood
2019 ◽  
Vol 9 (23) ◽  
pp. 5241 ◽  
Author(s):  
Ahmed M. Rashad ◽  
Waqar A. Khan ◽  
Saber M. M. EL-Kabeir ◽  
Amal M. A. EL-Hakiem

The micropolar nanofluids are the potential liquids that enhance the thermophysical features and ability of heat transportation instead of base liquids. Alumina and Titania nanoparticles are mixed in a micropolar fluid. The impact of convective boundary condition is also examined with assisting and opposing flows of both nanofluids. The main objective of this study is to investigate mixed convective flow and heat transfer of micropolar nanofluids across a cylinder in a saturated porous medium. Non-similar variables are used to make the governing equations dimensionless. The local similar and non-similar solutions are obtained by using the Runge-Kutta-Fehlberg method of seventh order. The impacts of various embedded variables on the flow and heat transfer of micropolar nanofluids are investigated and interpreted graphically. It is demonstrated that the skin friction and heat transfer rates depend on solid volume fraction of nanoparticles, Biot number, mixed convection, and material parameters.


2011 ◽  
Vol 15 (suppl. 2) ◽  
pp. 205-220 ◽  
Author(s):  
Iftikhar Ahmad ◽  
Manzoor Ahmed ◽  
Zaheer Abbas ◽  
Muhammad Sajid

In this study, we present a steady three-dimensional magnetohydrodynamic (MHD) flow and heat transfer characteristics of a viscous fluid due to a bidirectional stretching sheet in a porous medium. The heat transfer analysis has been carried out for two heating processes namely (i) the prescribed surface temperature (PST) and (ii) prescribed surface heat flux (PHF). In addition the heat transfer rate varies along the surface. The similarity solution of the governing boundary layer partial differential equations is developed by employing homotopy analysis method (HAM). The quantities of interest are velocity, temperature, skin-friction and wall heat flux. The results obtained are presented through graphs and tabular data. It is observed that both velocity and boundary layer thickness decreases by increasing the porosity and magnetic field. This shows that application of magnetic and porous medium cause a control on the boundary layer thickness. Moreover, the results are also compared with the existing values in the literature and found in excellent agreement.


Author(s):  
Hitoshi Sakamoto ◽  
Francis A. Kulacki

Transient conduction on a vertical, constant heat flux surface in a saturated porous medium is studied experimentally and analytically with a focus on determining near-wall thermal diffusivity. For combinations of different particulate solid and interstitial fluid, which give a range of conductivity ratios, ks/kf, from 0.5 to 2400, the present study finds that early-time transient temperature profiles can be analytically predicted using the thermal conductivity of the interstitial fluid because the near-wall porosity approaches 1.0. The conjugate heat transfer analysis accurately predicts the time the conductive front takes to travel through the impermeable wall. The present study also finds that conductive heat transfer along the wall is dependent on the wall thickness and must be taken into account when assessing measurement of local and overall Nusselt numbers. The present results raise the possibility of reinterpretation of much of the porous medium heat transfer experiments that make up the current database.


Sign in / Sign up

Export Citation Format

Share Document