Development of a System for Guaranteed User Access to the ATM Network

2006 ◽  
Vol 65 (18) ◽  
pp. 1683-1710
Author(s):  
Yu. V. Sanin ◽  
S. V. Snigirev
Keyword(s):  
2017 ◽  
Vol 45 (3) ◽  
pp. 508-528 ◽  
Author(s):  
Andres Sevtsuk ◽  
Raul Kalvo

We introduce a version of the Huff retail expenditure model, where retail demand depends on households’ access to retail centers. Household-level survey data suggest that total retail visits in a system of retail centers depends on the relative location pattern of stores and customers. This dependence opens up an important question—could overall visits to retail centers be increased with a more efficient spatial configuration of centers in planned new towns? To answer this question, we implement the model as an Urban Network Analysis tool in Rhinoceros 3D, where facility patronage can be analyzed along spatial networks and apply it in the context of the Punggol New Town in Singapore. Using fixed household locations, we first test how estimated store visits are affected by the assumption of whether shoppers come from homes or visit shops en route to local public transit stations. We then explore how adjusting both the locations and sizes of commercial centers can maximize overall visits, using automated simulations to test a large number of scenarios. The results show that location and size adjustments to already planned retail centers in a town can yield a 10% increase in estimated store visits. The methodology and tools developed for this analysis can be extended to other context for planning and right-sizing retail developments and other public facilities so as to maximize both user access and facilities usage.


Algorithms ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 80
Author(s):  
Qiuqi Han ◽  
Guangyuan Zheng ◽  
Chen Xu

Device-to-Device (D2D) communications, which enable direct communication between nearby user devices over the licensed spectrum, have been considered a key technique to improve spectral efficiency and system throughput in cellular networks (CNs). However, the limited spectrum resources cannot be sufficient to support more cellular users (CUs) and D2D users to meet the growth of the traffic data in future wireless networks. Therefore, Long-Term Evolution-Unlicensed (LTE-U) and D2D-Unlicensed (D2D-U) technologies have been proposed to further enhance system capacity by extending the CUs and D2D users on the unlicensed spectrum for communications. In this paper, we consider an LTE network where the CUs and D2D users are allowed to share the unlicensed spectrum with Wi-Fi users. To maximize the sum rate of all users while guaranteeing each user’s quality of service (QoS), we jointly consider user access and resource allocation. To tackle the formulated problem, we propose a matching-iteration-based joint user access and resource allocation algorithm. Simulation results show that the proposed algorithm can significantly improve system throughput compared to the other benchmark algorithms.


2021 ◽  
pp. 1-14
Author(s):  
Sampa Rani Bhadra ◽  
Ashok Kumar Pradhan ◽  
Utpal Biswas

For the last few decades, fiber optic cables not only replaced copper cables but also made drastic evolution in the technology to overcome the optoelectronic bandwidth mismatch. Light trail concept is such an attempt to minimize the optoelectronic bandwidth gap between actual WDM bandwidth and end user access bandwidth. A light trail is an optical bus that connects two nodes of an all optical WDM network. In this paper, we studied the concept of split light trail and proposed an algorithm namely Static Multi-Hop Split Light Trail Assignment (SMSLTA), which aims to minimize blocking probability, the number of static split light trails assigned and also the number of network resources used, at the same time maximizing the network throughput. Our proposed algorithm works competently with the existing algorithms and generates better performance in polynomial time complexity.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 878
Author(s):  
C. T. J. Dodson ◽  
John Soldera ◽  
Jacob Scharcanski

Secure user access to devices and datasets is widely enabled by fingerprint or face recognition. Organization of the necessarily large secure digital object datasets, with objects having content that may consist of images, text, video or audio, involves efficient classification and feature retrieval processing. This usually will require multidimensional methods applicable to data that is represented through a family of probability distributions. Then information geometry is an appropriate context in which to provide for such analytic work, whether with maximum likelihood fitted distributions or empirical frequency distributions. The important provision is of a natural geometric measure structure on families of probability distributions by representing them as Riemannian manifolds. Then the distributions are points lying in this geometrical manifold, different features can be identified and dissimilarities computed, so that neighbourhoods of objects nearby a given example object can be constructed. This can reveal clustering and projections onto smaller eigen-subspaces which can make comparisons easier to interpret. Geodesic distances can be used as a natural dissimilarity metric applied over data described by probability distributions. Exploring this property, we propose a new face recognition method which scores dissimilarities between face images by multiplying geodesic distance approximations between 3-variate RGB Gaussians representative of colour face images, and also obtaining joint probabilities. The experimental results show that this new method is more successful in recognition rates than published comparative state-of-the-art methods.


2021 ◽  
Vol 27 (S1) ◽  
pp. 1912-1913
Author(s):  
Trevor Moser ◽  
Irina Novikova ◽  
Amar Parvate ◽  
Samantha Powell ◽  
James Evans

Sign in / Sign up

Export Citation Format

Share Document