Li-ion Battery Thermal Management – Air vs. Liquid Cooling

Author(s):  
Taeyoung Han ◽  
Bahram Khalighi ◽  
Shailendra Kaushik
Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6257
Author(s):  
Chunyu Zhao ◽  
Beile Zhang ◽  
Yuanming Zheng ◽  
Shunyuan Huang ◽  
Tongtong Yan ◽  
...  

The Li-ion battery is of paramount importance to electric vehicles (EVs). Propelled by the rapid growth of the EV industry, the performance of the battery is continuously improving. However, Li-ion batteries are susceptible to the working temperature and only obtain the optimal performance within an acceptable temperature range. Therefore, a battery thermal management system (BTMS) is required to ensure EVs’ safe operation. There are various basic methods for BTMS, including forced-air cooling, liquid cooling, phase change material (PCM), heat pipe (HP), thermoelectric cooling (TEC), etc. Every method has its unique application condition and characteristic. Furthermore, based on basic BTMS, more hybrid cooling methods adopting different basic methods are being designed to meet EVs’ requirements. In this work, the hybrid BTMS, as a more reliable and environmentally friendly method for the EVs, will be compared with basic BTMS to reveal its advantages and potential. By analyzing its cost, efficiency and other aspects, the evaluation criterion and design suggestions are put forward to guide the future development of BTMS.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5695 ◽  
Author(s):  
Ankur Bhattacharjee ◽  
Rakesh K. Mohanty ◽  
Aritra Ghosh

The design of an optimized thermal management system for Li-ion batteries has challenges because of their stringent operating temperature limit and thermal runaway, which may lead to an explosion. In this paper, an optimized cooling system is proposed for kW scale Li-ion battery stack. A comparative study of the existing cooling systems; air cooling and liquid cooling respectively, has been carried out on three cell stack 70Ah LiFePO4 battery at a high discharging rate of 2C. It has been found that the liquid cooling is more efficient than air cooling as the peak temperature of the battery stack gets reduced by 30.62% using air cooling whereas using the liquid cooling method it gets reduced by 38.40%. The performance of the liquid cooling system can further be improved if the contact area between the coolant and battery stack is increased. Therefore, in this work, an immersion-based liquid cooling system has been designed to ensure the maximum heat dissipation. The battery stack having a peak temperature of 49.76 °C at 2C discharging rate is reduced by 44.87% to 27.43 °C after using the immersion-based cooling technique. The proposed thermal management scheme is generalized and thus can be very useful for scalable Li-ion battery storage applications also.


RSC Advances ◽  
2019 ◽  
Vol 9 (18) ◽  
pp. 9951-9961 ◽  
Author(s):  
Guoyun Fang ◽  
Yao Huang ◽  
Wei Yuan ◽  
Yang Yang ◽  
Yong Tang ◽  
...  

A novel battery thermal management system (BTMS) based on water evaporation (WE) and air-cooling (AC) for a tube–shell Li-ion battery (LIB) pack is designed.


Batteries ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 44 ◽  
Author(s):  
Takumi Yamanaka ◽  
Daiki Kihara ◽  
Yoichi Takagishi ◽  
Tatsuya Yamaue

Lithium (Li)-ion battery thermal management systems play an important role in electric vehicles because the performance and lifespan of the batteries are affected by the battery temperature. This study proposes a framework to establish equivalent circuit models (ECMs) that can reproduce the multi-physics phenomenon of Li-ion battery packs, which includes liquid cooling systems with a unified method. We also demonstrate its utility by establishing an ECM of the thermal management systems of the actual battery packs. Experiments simulating the liquid cooling of a battery pack are performed, and a three-dimensional (3D) model is established. The 3D model reproduces the heat generated by the battery and the heat transfer to the coolant. The results of the 3D model agree well with the experimental data. Further, the relationship between the flow rate and pressure drop or between the flow rate and heat transfer coefficients is predicted with the 3D model, and the data are used for the ECM, which is established using MATLAB Simulink. This investigation confirmed that the ECM’s accuracy is as high as the 3D model even though its computational costs are 96% lower than the 3D model.


Sign in / Sign up

Export Citation Format

Share Document