CHARACTERIZATION OF THE THERMAL RESPONSE OF ENERGETIC MATERIALS IN EARTH COVERED STORAGE

Author(s):  
Kenneth Blecker ◽  
Hamid Hadim
2003 ◽  
Vol 800 ◽  
Author(s):  
Brady J. Clapsaddle ◽  
Lihua Zhao ◽  
Alex E. Gash ◽  
Joe H. Satcher ◽  
Kenneth J. Shea ◽  
...  

ABSTRACTIn the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology, affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing metal oxide/silicon oxide nanocomposites in which the metal oxide is the major component. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. Furthermore, due to the large availability of organically functionalized silanes, the silicon oxide phase can be used as a unique way of introducing organic additives into the bulk metal oxide materials. As a result, the desired organic functionality is well dispersed throughout the composite material on the nanoscale. By introducing a fuel metal into the metal oxide/silicon oxide matrix, energetic materials based on thermite reactions can be fabricated. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its microscale counterparts due to the expected increase of mass transport rates between the reactants. The synthesis and characterization of these metal oxide/silicon oxide nanocomposites and their performance as energetic materials will be discussed.


2014 ◽  
Vol 50 (1) ◽  
pp. 71-85 ◽  
Author(s):  
Valentin Wagner ◽  
Peter Bayer ◽  
Gerhard Bisch ◽  
Markus Kübert ◽  
Philipp Blum

2017 ◽  
Vol 53 (6-7) ◽  
pp. 760-778 ◽  
Author(s):  
Philip F. Pagoria ◽  
Mao-Xi Zhang ◽  
Nathaniel B. Zuckerman ◽  
Alan J. DeHope ◽  
Damon A. Parrish

2018 ◽  
Vol 44 (2) ◽  
pp. 160-165 ◽  
Author(s):  
Jonathan C. Bennion ◽  
Iskander G. Batyrev ◽  
Jennifer A. Ciezak‐Jenkins

2018 ◽  
Author(s):  
P. C. Hsu ◽  
S. A. Strout ◽  
G. L. Klunder ◽  
E. M. Kahl ◽  
N. K. Muetterties ◽  
...  

2018 ◽  
Vol 24 (41) ◽  
pp. 10488-10497 ◽  
Author(s):  
Zhen Xu ◽  
Guangbin Cheng ◽  
Hongwei Yang ◽  
Jiaheng Zhang ◽  
Jean'ne M. Shreeve

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2965 ◽  
Author(s):  
Alessandro Franco ◽  
Paolo Conti

The performance of ground heat exchanger systems depends on the knowledge of the thermal parameters of the ground, such as thermal conductivity, capacity, and diffusivity. The knowledge of these parameters often requires quite accurate experimental analysis, known as a thermal response test (TRT). In this paper, after a general analysis of the various available types of TRT and a study of the theoretical basics of the method, we explore the perspective of the definition of a simplified routine method of analysis based on the combination of a particular version of TRT and the routine geotechnical tests for the characterization of soil stratigraphy and the ground characteristics. Geotechnical analyses are indeed mandatory before the construction of new buildings, even if limited to 30 m below the ground level or foundation base when piles are needed. The idea of developing TRT in connection with geotechnical test activity has the objective of promoting the widespread use of in situ experimental analysis and reducing TRT costs and time. The considerations presented in the present paper lead to reconsidering a particular variety of the TRT, in particular, the versions known as thermal response test while drilling (TRTWD) and TRT using heating cables (HC-TRT).


2020 ◽  
Vol 172 ◽  
pp. 14008
Author(s):  
Adrien François ◽  
Laurent Ibos ◽  
Vincent Feuillet ◽  
Johann Meulemans

The thermal resistance of a wall can be readily measured in steady-state. However, such a state is seldomly achieved in a building because of the variation of outdoor conditions as well as the high thermal inertia of building materials. This paper introduces a novel active (dynamic) method to measure the thermal resistance of a building wall. Not only are active approaches less sensitive to external temperature variations, they also enable to perform measurements within only a few hours. In the proposed methodology, an artificial thermal load is applied to a wall (heating of the indoor air) and its thermal response is monitored. Inverse techniques are used with a reduced model to estimate the value of the thermal resistance of a wall from the measured temperatures and heat fluxes. The methodology was validated on a known load-bearing wall built inside a climate chamber. The results were in good agreement with reference values derived from a steady-state characterization of the wall. The method also demonstrated a good reproducibility.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2222
Author(s):  
Alexander Vorozhtsov ◽  
Marat Lerner ◽  
Nikolay Rodkevich ◽  
Sergei Sokolov ◽  
Elizaveta Perchatkina ◽  
...  

Nanosized Al (nAl) powders offer increased reactivity than the conventional micron-sized counterpart, thanks to their reduced size and increased specific surface area. While desirable from the combustion viewpoint, this high reactivity comes at the cost of difficult handling and implementation of the nanosized powders in preparations. The coating with hydroxyl-terminated polybutadiene (HTPB) is proposed to improve powder handling and ease of use of nAl and to limit its sensitivity to aging. The nAl/HTPB composite can be an intermediate product for the subsequent manufacturing of mixed high-energy materials while maintaining the qualities and advantages of nAl. In this work, experimental studies of the high-energy mixture nAl/HTPB are carried out. The investigated materials include two composites: nAl (90 wt.%) + HTPB (10 wt.%) and nAl (80 wt.%) + HTPB (20 wt.%). Thermogravimetric analysis (TGA) is performed from 30 to 1000 °C at slow heating rate (10 °C/min) in inert (Ar) and oxidizing (air) environment. The combustion characteristics of propellant formulations loaded with conventional and HTPB-coated nAl are analyzed and discussed. Results show the increased burning rate performance of nAl/HTPB-loaded propellants over the counterpart loaded with micron-sized Al.


Sign in / Sign up

Export Citation Format

Share Document