Experimental Characterization of a Variable Refrigerant Flow Heat Pump for Solar-Domestic-Hot-Water Applications

Author(s):  
Julian C. Howarth ◽  
Michael R. Collins
Author(s):  
Willian Moreira Duarte ◽  
Tiago de Freitas Paulino ◽  
Sabrina Nogueira Rabelo ◽  
Luiz Machado ◽  
Antônio Maia

2014 ◽  
Vol 126 ◽  
pp. 113-122 ◽  
Author(s):  
Wei Wu ◽  
Tian You ◽  
Baolong Wang ◽  
Wenxing Shi ◽  
Xianting Li

2019 ◽  
Vol 111 ◽  
pp. 01066
Author(s):  
F. J. Aguilar ◽  
D. Crespí ◽  
P. V. Quiles

This article presents an experimental and modelling work which uses a compact domestic hot water heat pump (DHW-HP) that is simultaneously powered from photovoltaic panels (PV) and from the grid. Results from more than 240 days of experimental works have been used in order to develop and to validate the computer model of the system. The program, implemented in MATLAB, is computationally ‘light’ enough to allow mid-term simulations yet also detailed enough to accurately and coherently portray stratification within thermal storage tanks. Finally, as an example of the model capabilities, it has been used to simulate a domestic hot water tapping cycle from the European Standard EN 16147.


2008 ◽  
Vol 40 (9) ◽  
pp. 1731-1736 ◽  
Author(s):  
Ping Cui ◽  
Hongxing Yang ◽  
Jeffrey D. Spitler ◽  
Zhaohong Fang

2013 ◽  
Vol 313-314 ◽  
pp. 759-762
Author(s):  
Yun Feng Ma ◽  
Yan Xiang Liu ◽  
Tao Ji

In order to fully recycle power plant’s circulatingwater heat, improve the thermal efficiency and protect the environment, thispaper designs the comprehensive scheme of heat pumptechnology recycling power plant’s circulating water heat, including theboiler mae-up water pre-heating system, the central heating circulatingsystem and the domestic hot water circulating system, which not only run at thesame time but also function independently. Even in non-heating seasons,the waste heat of circulating water can be utilized fully. It is worthmentioning that this paper puts forward to install climate compensationdevice in the central heating system, which can perform intelligent district timesharing control to meet different users’ needs.


2017 ◽  
Vol 152 ◽  
pp. 273-278 ◽  
Author(s):  
Feng-Guo Liu ◽  
Zhong-Yun Tian ◽  
Fu-Jiang Dong ◽  
Chao Yan ◽  
Rui Zhang ◽  
...  

2021 ◽  
Author(s):  
Afarin Amirirad

Considering the large energy consumption of conventional water heaters in residential buildings, the performance of a new type of water heater has been characterized through conducting experiments and numerical modelling. The specific water heater investigated in this work benefits from heat absorption from the indoor air, denoted as the air source heat pump water heater (ASHPWH), and is located in the Archetype Sustainable Twin House B in Toronto. The experiments have been conducted under three different indoor conditions associated with temperature and humidity. The coefficient of performance (COP), which quantifies the ratio of heating capacity to the consumed power of ASHPWH, ranges between 1.5 and 5, depending on the indoor dry bulb and water inlet temperatures. A TRNSYS model of ASHPWH has been constructed based on the obtained experimental results and has subsequently been integrated with a TRNSYS model of the Archetype Sustainable House (ASH). The numerical results were verified with the experimental data. The model results suggests that after employing ASHPWH, the domestic hot water energy consumption reduces by 60.3% and 53.2% compared to the electric water heater in summer and winter respectively. Due to the energy absorption of ASHPWH from the indoor environment, the heating load of the ASH house increases while its cooling load decreases. Furthermore, the annual electricity consumption of the ASH house due to the required heating and cooling as well as the domestic hot water demand is reduced by 21.3%. Finally, as a consequence of employing ASHPWH, the energy cost and GHG emission were reduced respectively by 22% and 21.7%. By investigating the system in four other Canadian cities, it appears that Vancouver and Edmonton would have the maximum and minimum energy savings respectively.


2021 ◽  
Author(s):  
Afarin Amirirad

Considering the large energy consumption of conventional water heaters in residential buildings, the performance of a new type of water heater has been characterized through conducting experiments and numerical modelling. The specific water heater investigated in this work benefits from heat absorption from the indoor air, denoted as the air source heat pump water heater (ASHPWH), and is located in the Archetype Sustainable Twin House B in Toronto. The experiments have been conducted under three different indoor conditions associated with temperature and humidity. The coefficient of performance (COP), which quantifies the ratio of heating capacity to the consumed power of ASHPWH, ranges between 1.5 and 5, depending on the indoor dry bulb and water inlet temperatures. A TRNSYS model of ASHPWH has been constructed based on the obtained experimental results and has subsequently been integrated with a TRNSYS model of the Archetype Sustainable House (ASH). The numerical results were verified with the experimental data. The model results suggests that after employing ASHPWH, the domestic hot water energy consumption reduces by 60.3% and 53.2% compared to the electric water heater in summer and winter respectively. Due to the energy absorption of ASHPWH from the indoor environment, the heating load of the ASH house increases while its cooling load decreases. Furthermore, the annual electricity consumption of the ASH house due to the required heating and cooling as well as the domestic hot water demand is reduced by 21.3%. Finally, as a consequence of employing ASHPWH, the energy cost and GHG emission were reduced respectively by 22% and 21.7%. By investigating the system in four other Canadian cities, it appears that Vancouver and Edmonton would have the maximum and minimum energy savings respectively.


Sign in / Sign up

Export Citation Format

Share Document