scholarly journals RILEM TC 178-TMC: 'Testing and modelling chloride penetration in concrete' Analysis of total chloride content in concrete

10.1617/13840 ◽  
2002 ◽  
Vol 35 (253) ◽  
pp. 583-585 ◽  
Author(s):  
2021 ◽  
Vol 55 (1) ◽  
Author(s):  
Alisa Machner ◽  
Marie Bjørndal ◽  
Aljoša Šajna ◽  
Nikola Mikanovic ◽  
Klaartje De Weerdt

AbstractTo investigate the effect of leaching on chloride ingress profiles in concrete and mortar, we exposed concrete and mortar specimens for 90 and 180 days to two different exposure solutions: 3% NaCl, and 3% NaCl with KOH added to limit leaching. The solutions were replaced weekly. After exposure, we determined total chloride profiles to investigate the chloride ingress, and portlandite profiles to assess the extent of leaching. The results showed that leaching during exposure greatly affects the chloride ingress profiles in mortar and concrete. We found that leaching leads to considerably higher maximum total chloride content and deeper chloride penetration into the concrete than in the specimens where leaching was limited. We recommend therefore that leaching should be taken into account in standard laboratory testing and that more mechanistic service life models should be used to take into account the impact of leaching.


2021 ◽  
Vol 13 (8) ◽  
pp. 4169
Author(s):  
Congtao Sun ◽  
Ming Sun ◽  
Tao Tao ◽  
Feng Qu ◽  
Gongxun Wang ◽  
...  

Chloride binding capacity and its effect on the microstructure of mortar made with marine sand (MS), washed MS (WMS) and river sand (RS) were investigated in this study. The chloride contents, hydration products, micromorphology and pore structures of mortars were analyzed. The results showed that there was a diffusion trend for chloride ions from the surface of fine aggregate to cement hydrated products. During the whole curing period, the free chloride content in the mortars made by MS and WMS increased firstly, then decreased and stabilized finally with time. However, the total chloride content of three types of mortar hardly changed. The bound chloride content in the mortars made by MS and WMS slightly increased with time, and the bound chloride content included the MS, the WMS and the RS arranged from high to low. C3A·CaCl2·10H2O (Friedel’s salt) was formed at the early age and existed throughout the curing period. Moreover, the volume of fine capillary pore with a size of 10–100 nm increased in the MS and WMS mortar.


2019 ◽  
Vol 18 (3) ◽  
pp. 545-553
Author(s):  
Cristiane Silva ◽  
◽  
Jesús Bernal Camacho ◽  
Júlio Bandeira ◽  
André Guimarães ◽  
...  

CONSTRUCTION ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 31-39
Author(s):  
Mohd Faizal Md Jaafar ◽  
Muhd Norhasri Muhd Sidek ◽  
Hamidah Mohd Saman ◽  
Khairunisa Muthusamy ◽  
Norhaiza Ghazali ◽  
...  

The major concern on the deterioration of reinforced concrete structure is due to the corrosion of steel reinforcement from the aggressive environment such as chloride penetration. Ultra-high performance concrete (UHPC) is an advanced concrete material having ultra-high strength with excellent durability properties. Inclusion of nano metaclay in UHPC is expected to overcome the chloride transport properties in UHPC by providing nano filler effect. Two (2) assessments were conducted which are chloride content and chloride depth were examined. All the concrete specimens were immersed in 3% NaCl solution up to 365 days and the tests conducted were performed at 3, 7, 28, 56, 91, 182 and 365 days. Response surface method (RSM) was performed to evaluate the interaction and relationship between operating variables (compressive strength and nano metaclay content). Based on RSM analysis, inclusion of nano metaclay in UHPC have good relationship towards the chloride resistance characteristics and adequate durability performance in terms of chloride penetration resistance. The results exhibited that inclusion of 1% nano metaclay significantly and positively affect in term of chloride penetration resistance.


Sign in / Sign up

Export Citation Format

Share Document