Changes in pore water composition and in total chloride content at different levels of cement paste plates under different storage conditions

1992 ◽  
Vol 22 (1) ◽  
pp. 129-138 ◽  
Author(s):  
J. Tritthart
1985 ◽  
Vol 25 (05) ◽  
pp. 704-710
Author(s):  
F.T. Manheim ◽  
E.E. Peck ◽  
C.M. Lane

Abstract We have devised a technique for determining chloride in interstitial water of consolidated rocks. Samples of rocks ranging from 5 to 10 g are crushed and sieved under controlled conditions and then ground with distilled water to submicron size in a closed mechanical mill. After ultra-centrifugation, chloride content is determined by coulometric titration. The chloride concentrations and total pore-water concentrations, obtained earlier from the same pore-water concentrations, obtained earlier from the same samples by low-temperature vacuum desiccation, are used to arrive at the "original" pore-water chloride concentrations by a simple iteration procedure. Interstitial chlorinity results obtained from Cretaceous and Jurassic strata in the Gulf of Mexico coastal areas ranged from 20 to 100 g/kg Cl with reproducibility approaching +/- 1%. We have also applied the technique to igneous and metamorphic bedrocks as well as ocean basalts containing 1 % water or less. Chloride values ranging from 6.7 to 20 g/kg with a reproducibility of about 5% were obtained. Introduction This paper outlines a technique for precision analysis of interstitial chloride and water content (porosity) of shales and other consolidated rocks from deep-earth strata. Nearly all the literature on the composition of interstitial water (formation fluid) of deep-earth strata refers to fluids from reservoir rocks or permeable horizons. In many areas, shales or other nonreservoir rocks constitute the bulk of sedimentary sequences. These rocks contain interstitial fluids of generally unknown composition. The paucity of data is caused partly by the lack of access to fresh cores and partly by analytical difficulties in obtaining interstitial water from such materials. Until the late 1960's, much of the analytical literature dealing with pore fluids from deep sedimentary nonreservoir rocks was published in the Soviet Union and in references cited by those authors. Since then, interest in several hydrochemical phenomena relating to nonreservoir rocks has increased among phenomena relating to nonreservoir rocks has increased among scientists in the U.S. and other Western countries: interest in hydrocarbon resources in overpressured strata dominated by undercompacted shales that may have anomalous chloride content; need for knowledge of the proportion of bound water (electrolyte-poor) in porosity proportion of bound water (electrolyte-poor) in porosity during quantitative interpretation of electrical logs for oil and gas saturation in shaly sands; need for better understanding of nonreservoir rocks as sealing beds for deep waste disposal; and, finally, a desire to understand better the hydrochemical history of deeper sedimentary basins. However, only a relatively few field studies are available on the topics in question. Many of these are student theses or work based on them. The basic procedure underlying the studies of interstitial water composition of shales is simply crushing and grinding a rock sample, leaching it with distilled water, and analyzing the leachate. The salt content of the solid is then related to an independent determination of total pore fluid or porosity. Techniques based on this principle were used for shallow groundwater studies, for general rocks, and for studying oilfield drill cores. Comments in the literature and our own experiments suggest that simple approaches to the leaching process may yield accuracies of 10 to 20% for chlorides in rocks with a significant PV fraction. As water contents decrease to 1%, however, an uncontrolled system may easily yield errors of several hundred percent and uncertainties associated with the bound water (see the section called Discussion). Most of the studies of interstitial chlorinity of water composition in deep oilfield strata have been performed on stored, dried, or partly dried materials and/or have used insufficiently documented or quantified techniques. The goal of this study has been to approach a reproducibility and relative accuracy of I % in the values of interstitial chloride, given our definition of mobile water discussed later. Sampling and Handling of Drilling-Core Samples A potential source of error in interstitial fluid analysis is the contamination of cores by drilling fluid. However, experience in the Deep Sea Drilling Project and other drilling studies 11–15 show that, if external contaminated layers are cut or chipped away from undeformed normal, non-fractured silty-clay cores soon after recovery, virtually unaffected inner sections can be obtained. Even permeable (reservoir-type) rocks sometimes may be sampled successfully for pore-fluid study. During wireline coring by the AMCOR project with the drilling vessel Glomar Conception on the Atlantic Continental Shelf, virtually identical pore-fluid chloride profiles were obtained in repeated drillings performed with seawater and freshwater drilling fluids (Fig. 1). SPEJ P. 704


2021 ◽  
Vol 13 (8) ◽  
pp. 4169
Author(s):  
Congtao Sun ◽  
Ming Sun ◽  
Tao Tao ◽  
Feng Qu ◽  
Gongxun Wang ◽  
...  

Chloride binding capacity and its effect on the microstructure of mortar made with marine sand (MS), washed MS (WMS) and river sand (RS) were investigated in this study. The chloride contents, hydration products, micromorphology and pore structures of mortars were analyzed. The results showed that there was a diffusion trend for chloride ions from the surface of fine aggregate to cement hydrated products. During the whole curing period, the free chloride content in the mortars made by MS and WMS increased firstly, then decreased and stabilized finally with time. However, the total chloride content of three types of mortar hardly changed. The bound chloride content in the mortars made by MS and WMS slightly increased with time, and the bound chloride content included the MS, the WMS and the RS arranged from high to low. C3A·CaCl2·10H2O (Friedel’s salt) was formed at the early age and existed throughout the curing period. Moreover, the volume of fine capillary pore with a size of 10–100 nm increased in the MS and WMS mortar.


2009 ◽  
Vol 101 (1) ◽  
pp. 88
Author(s):  
Ulrike Schacht ◽  
Steffen Kutterolf ◽  
Oliver Bartdorff ◽  
Emelina Corrales Cordero

2006 ◽  
Vol 932 ◽  
Author(s):  
M. De Craen

ABSTRACTIn Belgium, the Boom Clay is studied as the reference formation for geological disposal of high-level radioactive waste and spent fuel. As the Boom Clay is considered as the main barrier for radionuclide migration/retention, a thorough characterisation of the clay and its pore water was done. This facilitates better understanding of the long-term geological processes and the distribution of the trace elements and radionuclides.From a mineralogical/geochemical point of view, the Boom Clay is considered as a rather homogeneous sediment, vertically as well as laterally. It is composed of detrital minerals, organic matter and fossils. Minerals are mainly clay minerals, quartz and feldspars. Minor amounts of pyrite and carbonates are also present. Small variations in mineralogical/geochemical composition are related to granulometrical variations. The radiochemical study indicates that the Boom Clay is in a state of secular radioactive equilibrium, meaning that the Boom Clay has not been disturbed for a very long time.Pore water sampling is done in situ from various piezometers, or by the squeezing or leaching of clay cores in the laboratory. These three pore water sampling techniques have been compared and evaluated. Boom Clay pore water is a NaHCO3 solution of 15 mM, containing 115 mg·1−1 of dissolved natural organic carbon. Some slight variations in pore water composition have been observed and can be explained by principles of chemical equilibrium.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yunsu Lee ◽  
Mingyun Kim ◽  
Zhengxin Chen ◽  
Hanseung Lee ◽  
Seungmin Lim

A chloride-binding capacity is the major factor to mitigate the ingress of chloride into concrete. This paper presents the chloride-binding capacity of Portland cement paste containing synthesized CA2 (CaO·2Al2O3). The CA2 was synthesized in the high-temperature furnace and characterized by X-ray diffraction for inspecting the purity. The synthesized CA2 was substituted for Portland cement by 0%, 5%, and 10% by weight, and the NaCl solution was used as an internal chloride, which is assumed as a total chloride. The chloride-binding capacity of cement paste was calculated from a water-soluble chloride extraction method by the application of the Langmuir isotherm equation. And the hydration products were analyzed using X-ray diffraction and thermogravimetric analysis. We demonstrate that the CA2 increases an AFm phase in the Portland cement system, and the incorporation of CA2 consequently enhances the chloride-binding capacity of cement paste samples.


Sign in / Sign up

Export Citation Format

Share Document