scholarly journals Plant growth and fate of nitrogen in mixed cropping, intercropping and crop rotation. VI. Nitrogen uptake in rice plants from the applied Italian ryegrass, fertilizer and soil.

1988 ◽  
Vol 57 (4) ◽  
pp. 650-654
Author(s):  
Hironori MIMOTO ◽  
Toichiro INANO ◽  
Hiroyuki DAIMON ◽  
Hiroyoshi CHUJO
2021 ◽  
Vol 78 (5) ◽  
Author(s):  
André Guareschi ◽  
Joanei Cechin ◽  
Mario Antonio Bianchi ◽  
Ivan Carlos Maldaner ◽  
Sergio Luiz de Oliveira Machado

2022 ◽  
Vol 8 ◽  
Author(s):  
Mohammad Imran Mir ◽  
Bee Hameeda ◽  
Humera Quadriya ◽  
B. Kiran Kumar ◽  
Noshin Ilyas ◽  
...  

A diverse group of rhizobacteria persists in the rhizospheric soil, on the surface of roots, or in association with rice plants. These bacteria colonize plant root systems, enhance plant growth and crop yield. Indigenous rhizobacteria are known to promote soil health, grain production quality and serve as sustainable bioinoculant. The present study was aimed to isolate, identify and characterize indigenous plant growth promoting (PGP) diazotrophic bacteria associated with the rhizosphere of rice fields from different areas of Jammu and Kashmir, India. A total of 15 bacteria were isolated and evaluated for various PGP traits, antagonistic activity against phytopathogens, production of hydrolytic enzymes and biofilm formation under in-vitro conditions. The majority of the isolated bacteria were Gram-negative. Out of 15 bacterial isolates, nine isolates produced IAA (12.24 ± 2.86 to 250.3 ± 1.15 μg/ml), 6 isolates exhibited phosphate solubilization activity (36.69 ± 1.63 to 312.4 ± 1.15 μg/ml), 7 isolates exhibited rock phosphate solubilization while 5 isolates solubilized zinc (10–18 mm), 7 isolates showed siderophore production, 8 isolates exhibited HCN production, 6 isolates exhibited aminocyclopropane-1-carboxylate (ACC) deaminase activity, 13 isolates exhibited cellulase activity, nine isolates exhibited amylase and lipase activity and six isolates exhibited chitinase activity. In addition, 5 isolates showed amplification with the nifH gene and showed a significant amount of nitrogenase activity in a range of 0.127–4.39 μmol C2H4/mg protein/h. Five isolates viz., IHK-1, IHK-3, IHK-13, IHK-15 and IHK-25 exhibited most PGP attributes and successfully limited the mycelial growth of Rhizoctonia solani and Fusarium oxysporum in-vitro. All the five bacterial isolates were identified based on morphological, biochemical and 16S rDNA gene sequencing study, as Stenotrophomonas maltophilia, Enterobacter sp., Bacillus sp., Ochrobactrum haematophilum and Pseudomonas aeruginosa. Rice plants developed from seeds inoculated with these PGP strains individually had considerably higher germination percentage, seed vigor index and total dry biomass when compared to control. These findings strongly imply that the PGP diazotrophic bacteria identified in this work could be employed as plant growth stimulators in rice.


2005 ◽  
Vol 74 (3) ◽  
pp. 285-290 ◽  
Author(s):  
Takeo Sakaigaichi ◽  
Shigenori Morita ◽  
Jun Abe ◽  
Takeshi Yamaguchi

Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 856 ◽  
Author(s):  
Mette Sønderskov ◽  
Gayle J. Somerville ◽  
Myrtille Lacoste ◽  
Jens Erik Jensen ◽  
Niels Holst

Lolium multiflorum (annual Italian ryegrass) and other grass weeds are an increasing problem in cereal cropping systems in Denmark. Grass weeds are highly competitive and an increasing number of species develop resistance against the most commonly used herbicide modes of action. A diverse management strategy provides a better overall control of grass weeds and decreases the reliance on herbicides. The bio-economic decision support system, DK-RIM (Denmark-Ryegrass Integrated Management), was developed to assist integrated management of L. multiflorum in Danish cropping systems, based on the Australian RIM model. DK-RIM provides long-term estimations (10-year period) and visual outputs of L. multiflorum population development, depending on management strategies. The dynamics of L. multiflorum plants within the season and of the soil seed bank across seasons are simulated. The user can combine cultural weed control practices with chemical control options. Cultural practices include crop rotation changes, seeding density, sowing time, soil tillage system, and cover crops. Scenarios with increasing crop rotation diversity or different tillage strategies were evaluated. DK-RIM aims at being an actual support system, aiding the farmer’s decisions and encouraging discussions among stakeholders on alternative management strategies.


Sign in / Sign up

Export Citation Format

Share Document