scholarly journals DK-RIM: Assisting Integrated Management of Lolium multiflorum, Italian Ryegrass

Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 856 ◽  
Author(s):  
Mette Sønderskov ◽  
Gayle J. Somerville ◽  
Myrtille Lacoste ◽  
Jens Erik Jensen ◽  
Niels Holst

Lolium multiflorum (annual Italian ryegrass) and other grass weeds are an increasing problem in cereal cropping systems in Denmark. Grass weeds are highly competitive and an increasing number of species develop resistance against the most commonly used herbicide modes of action. A diverse management strategy provides a better overall control of grass weeds and decreases the reliance on herbicides. The bio-economic decision support system, DK-RIM (Denmark-Ryegrass Integrated Management), was developed to assist integrated management of L. multiflorum in Danish cropping systems, based on the Australian RIM model. DK-RIM provides long-term estimations (10-year period) and visual outputs of L. multiflorum population development, depending on management strategies. The dynamics of L. multiflorum plants within the season and of the soil seed bank across seasons are simulated. The user can combine cultural weed control practices with chemical control options. Cultural practices include crop rotation changes, seeding density, sowing time, soil tillage system, and cover crops. Scenarios with increasing crop rotation diversity or different tillage strategies were evaluated. DK-RIM aims at being an actual support system, aiding the farmer’s decisions and encouraging discussions among stakeholders on alternative management strategies.

Weed Science ◽  
2015 ◽  
Vol 63 (3) ◽  
pp. 676-689 ◽  
Author(s):  
Myrtille Lacoste ◽  
Stephen Powles

RIM, or “Ryegrass Integrated Management,” is a model-based software allowing users to conveniently test and compare the long-term performance and profitability of numerous ryegrass control options used in Australian cropping systems. As a user-friendly decision support system that can be used by farmers, advisers, and industry professionals, RIM can aid the delivery of key recommendations among the agricultural community for broadacre cropping systems threatened by herbicide resistance. This paper provides advanced users and future developers with the keys to modify the latest version of RIM in order to facilitate future updates, modifications, and adaptations to other situations. The various components of RIM are mapped and explained, and the key principles underlying the construction of the model are explained. The implementation of RIM into a Microsoft Excel® software format is also documented, with details on how user inputs are coded and parameterized. An overview of the biological, agronomic, and economic components of the model is provided, with emphasis on the ryegrass biological characteristics most critical for its effective management. The extreme variability of these parameters and the subsequent limits of RIM are discussed. The necessary compromises were achieved by emphasizing the primary end-use of the program as a decision support system for farmers and advisors.


2021 ◽  
Vol 3 ◽  
Author(s):  
Giovanni Antonio Puliga ◽  
Jan Thiele ◽  
Hauke Ahnemann ◽  
Jens Dauber

In agroecosystems, crop diversification plays a fundamental role in maintaining and regenerating biodiversity and ecosystem services, such as natural pest control. Temporal diversification of cropping systems can affect the presence and activity of natural enemies by providing alternative hosts and prey, food, and refuges for overwintering. However, we still lack studies on the effects of temporal diversification on generalist predators and their biocontrol potential conducted at field scale in commercial agricultural settings. Here, we measured proxies of ecosystem functions related with biological pest control in 29 commercial agricultural fields characterized by cereal-based cropping system in Lower-Saxony, northern Germany. The fields differed in the number of crops and cover crops cultivated during the previous 12 years. Using the Rapid Ecosystem Function Assessment approach, we measured invertebrate predation, seed predation and activity density of generalist predators. We aimed at testing whether the differences in the crop rotations from the previous years would affect activity of predators and their predation rates in the current growing season. We found that the length of the crop rotation had neutral effects on the proxies measured. Furthermore, predation rates were generally lower if the rotation comprised a higher number of cover crops compared to rotation with less cover crops. The activity density of respective taxa of predatory arthropods responded differently to the number of cover crops in the crop rotation. Our results suggest that temporal crop diversity may not benefit the activity and efficiency of generalist predators when diversification strategies involve crops of very similar functional traits. Adding different resources and traits to the agroecosystems through a wider range of cultivated crops and the integration of semi-natural habitats are aspects that need to be considered when developing more diverse cropping systems aiming to provide a more efficient natural pest control.


2012 ◽  
Vol 47 (6) ◽  
pp. 863-868 ◽  
Author(s):  
Marcolino Frederico Miguel ◽  
Henrique Mendonça Nunes Ribeiro Filho ◽  
Steben Crestani ◽  
Fabiana da Rocha Ramos ◽  
Tereza Cristina Moraes Genro

The objective of this work was to assess the effects of the sward structure of Italian ryegrass (Lolium multiflorum), during the first grazing cycle, on its morphological and bromatological characteristics throughout the growing season, and on the performance of dairy cows. The treatments consisted of two structures obtained as a function of canopy-light interception: high-light interception (HLI) and low-light interception (LLI), with different pre-grazing heights in the first grazing cycle. Pasture was managed under rotational grazing with a herbage allowance not below 30 kg dry matter (DM) per cow per day. Three grazing cycles, with a grazing interval of 30 days, were evaluated. Pre-grazing herbage mass was greater (2,240 vs. 1,656 kg ha-1 DM), but the proportion of leaf blades was smaller (0.35 vs. 0.43) for HLI swards. Neutral detergent fiber (NDF) content and organic matter digestibility (OMD) were similar between treatments in the first grazing cycle, but in the second and third ones NDF was greater, and OMD lower, for the HLI swards. Milk yields were greater for cows grazing LLI swards (19.4 vs. 21.1 kg per day). Initial grazing with 90% of light interception promotes greater nutritional value in the subsequent cycles.


2010 ◽  
Vol 24 (3) ◽  
pp. 281-288 ◽  
Author(s):  
Traci A. Rauch ◽  
Donald C. Thill ◽  
Seth A. Gersdorf ◽  
William J. Price

Persistent use of herbicides has resulted in the selection of many herbicide-resistant weeds worldwide. A survey of 75 fields in the Palouse region of the inland Pacific Northwest was conducted to determine the extent of Italian ryegrass resistance to grass herbicides commonly used in winter wheat-cropping systems. Plants grown from collected seed samples were tested for resistance to diclofop, clodinafop, quizalofop, tralkoxydim, sethoxydim, clethodim, pinoxaden, triasulfuron, mesosulfuron, flucarbazone, imazamox, and flufenacet/metribuzin. Averaged across herbicide families within a herbicide group, some level of resistance was exhibited in 73, 31, and 31% of the populations to the aryloxyphenoxypropionates, cyclohexanediones, and phenylpyrazoline herbicides, respectively, and 39, 53, and 55% of the populations to the sulfonylureas, sulfonylaminocarbonyltriazolinone, and imidazolinone herbicides, respectively. Twelve percent of the populations showed some level of resistance to flufenacet/metribuzin. Cross-resistance to all acetyl coenzyme A carboxylase-inhibiting (group 1) herbicides was observed in 12% of the populations, whereas 25% of the populations were cross-resistant to all acetolactate synthase-inhibiting (group 2) herbicides tested. Of all the populations tested, 7% exhibited multiple resistance to at least one herbicide within all three groups tested. Only 5% of populations were completely susceptible to all 12 herbicides tested. These results indicate that herbicide-resistant Italian ryegrass populations are now common across much of the Palouse region in northern Idaho and eastern Washington.


2004 ◽  
Vol 84 (1) ◽  
pp. 187-194 ◽  
Author(s):  
D. McCartney ◽  
L. Townley-Smith ◽  
A. Vaage ◽  
J. Pearen

Herbage production for silage and pasture production of annual species was investigated near Melfort in northeastern Saskatchewan. Barley (Hordeum vulgare L.) and oats (Avena sativa L.) were seeded as spring monocrops (SMC) and in binary intercrop (IC) mixtures with fall species including winter wheat (Triticum aestivum L.), fall rye (Secale cereale L.), winter triticale (X Triticosecale Wittmack L.), biennial Italian ryegrass (Lolium multiflorum Lam.) and annual Westerwolds ryegrass (Lolium multiflorum Lam.). Fall species were also seeded as monocrops (FMC). Silage Spring harvest occurred when barley (early-silage cut) and oats (late-silage cut) reached soft dough stage and again late in the autumn. An additional deferred grazing (DG) treatment containing each one fall species was harvested once in the autumn. Mean ranking of spring herbage silage yield was Oat-SMC (100%) > Oat-IC (91%) > Barley-SMC (83%) = Barley-IC (78%) > late-cut FMC (53%) > early-cut FMC (42%) (P ≤ 0.001). SilageSpring herbage yield of IC combinations was similar, but FMCs containing annual ryegrass were 26% to 34% (P ≤ .01) greater than other treatments. Crude protein content (g kg-1) was 14 to 35% higher (P ≤ 0.001) in IC systems than the corresponding SMC. Neutraleutral detergent fibre (NDF) and acid detergent fibre (ADF) content (g kg-1) of barley based systems was 15 and 22% lower (P ≤ 0.001) than those with oats. Ranking and relative productivity for fall pasture was DG (100%) > early-cut FMC (67%) > late-cut FMC (49%) > Barley-IC (30%) > Oat-IC (24%) = Barley-SMC (14%) (P ≤ 0.001). Cropping systems that contained no spring cereal produced 2.37-fold higher (P ≤ 0.001) fall pasture yield than those with spring cereals. Among FMCs, ICs and DG systems, mean yield of ryegrass treatments were generally higher (P ≤ 0.05) than that of fall cereals. Key words: Annual forage, deferred grazing, intercrop, monocrop


2013 ◽  
Vol 27 (1) ◽  
pp. 231-240 ◽  
Author(s):  
Bo Melander ◽  
Nicolas Munier-Jolain ◽  
Raphaël Charles ◽  
Judith Wirth ◽  
Jürgen Schwarz ◽  
...  

Noninversion tillage with tine- or disc-based cultivations prior to crop establishment is the most common way of reducing tillage for arable cropping systems with small grain cereals, oilseed rape, and maize in Europe. However, new regulations on pesticide use might hinder further expansion of reduced-tillage systems. European agriculture is asked to become less dependent on pesticides and promote crop protection programs based on integrated pest management (IPM) principles. Conventional noninversion tillage systems rely entirely on the availability of glyphosate products, and herbicide consumption is mostly higher compared to plow-based cropping systems. Annual grass weeds and catchweed bedstraw often constitute the principal weed problems in noninversion tillage systems, and crop rotations concurrently have very high proportions of winter cereals. There is a need to redesign cropping systems to allow for more diversification of the crop rotations to combat these weed problems with less herbicide input. Cover crops, stubble management strategies, and tactics that strengthen crop growth relative to weed growth are also seen as important components in future IPM systems, but their impact in noninversion tillage systems needs validation. Direct mechanical weed control methods based on rotating weeding devices such as rotary hoes could become useful in reduced-tillage systems where more crop residues and less workable soils are more prevalent, but further development is needed for effective application. Owing to the frequent use of glyphosate in reduced-tillage systems, perennial weeds are not particularly problematic. However, results from organic cropping systems clearly reveal that desisting from glyphosate use inevitably leads to more problems with perennials, which need to be addressed in future research.


2019 ◽  
Vol 37 ◽  
Author(s):  
G. CONCENÇO ◽  
A. ANDRES ◽  
F. SCHREIBER ◽  
A.F. SILVA ◽  
I.S. MOISINHO ◽  
...  

ABSTRACT: The aim of this study was to evaluate the occurrence of weeds in flooded rice areas, as a function of planting system and herbicide programmes in the previous cropping year. The experiment was installed in field conditions, in randomized complete blocks design, arranged in factorial scheme 3 x 2, with eight replications. In factor A, treatments consisted on conventional tillage, minimum tillage and no till cropping systems, coupled to the application (traditional control) or not (semi-ecological system) of herbicides (Factor B). One year after rice cultivation, preceding the planting of the next cropping season, phytosociological evaluations of the weed communities present in the treatments were carried out. We assessed the overall infestation level and weed species composition, which were classified by their respective density, frequency and dominance abilities. We also estimated the diversity coefficients of Simpson and Shannon Weiner, and the sustainability coefficient of Shannon; treatments were also grouped by similarity in weed species composition. Rice growing systems (traditional or semi-ecological) promote remarkable differences in weed occurrence. Herbicide-based crops select specific companion weed species, but crop rotation or winter cover crops are not a sine qua non condition for success since a good herbicide programme is planned. For the Semi ecological system, crop rotation, thick winter soil mulching and association with animal presence and grazing are essential for the short, medium and long-term inhibition of weeds.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1439
Author(s):  
Yesuf Assen Mohammed ◽  
Swetabh Patel ◽  
Heather L. Matthees ◽  
Andrew W. Lenssen ◽  
Burton L. Johnson ◽  
...  

Improved agronomic management strategies are needed to minimize the impact that current maize (Zea mays L.) and soybean (Glycine max (L.) Merr.) production practices have on soil erosion and nutrient losses, especially nitrogen (N). Interseeded cover crops in standing maize and soybean scavenge excess soil N and thus reduce potential N leaching and runoff. The objectives were to determine the impact that pennycress (Thlaspi arvense L.) (PC), winter camelina (Camelina sativa (L.) Crantz) (WC), and winter rye (Secale cereale L.) (WR) cover crops have on soil N, and carbon (C) and N accumulation in cover-crop biomass. The cover crops were interseeded in maize at the R5 growth stage and in soybean at R7 in four replicates over two growing seasons at four locations. Soil and aboveground biomass samples were taken in autumn and spring. Data from the maize and soybean systems were analyzed separately. The results showed that cover crops had no effect on soil NH4+-N under both systems. However, winter rye decreased soil NO3−-N up to 76% compared with no-cover-crop treatment in the soybean system. Pennycress and WC scavenged less soil N than WR. Similarly, N and C accumulation in PC and WC biomass were less than in WR, in part because of their poor growth performance under the interseeding practice. Until PC and WC varieties with improved suitability for interseeding are developed, other agronomic practices may need to be explored for improving N scavenging in maize and soybean cropping systems to reduce nutrient leaching and enhance crop diversification.


2018 ◽  
Vol 36 (0) ◽  
Author(s):  
C.T. FORTE ◽  
L. GALON ◽  
A.N. BEUTLER ◽  
F.W. REICHERT JR. ◽  
A.D. MENEGAT ◽  
...  

ABSTRACT: Phytosociological studies are groups of methods that aim at the identification, composition and distribution of plant species in a community. The objective of this study was to identify and quantify the main weeds found in beans, maize and soybean cultivated in no-tillage and conventional systems. The experimental design was a randomized block one, with four replications. Experiments were conducted during three consecutive years, with summer crop (bean, maize and soybean) treatments, no-tillage system (NTS) composed by the covers, black oat, vetch and forage radish, in addition to their intercrop. In the conventional planting system (CTS), the area was left fallow in the off-season. The shoot dry matter of the covers was evaluated in each crop. The evaluated variables were: frequency, density, abundance, dry matter and the importance value index of the species in the area. Eighteen species of weeds and 12 families were identified, with Asteraceae and Poaceae families showing the highest number of individuals. The shoot dry matter production presented a difference among the covers; the cover black oat alone and intercrop with radish and vetch stood out, with the highest averages in the 3 years of the experiments. Cropping systems and different cover crops within the no-tillage system interfered in the number of encontered species. The emergence of Euphorbia heterophylla was favored, while the emergence of Lolium multiflorum was inhibited. E. heterophylla was the most encountered in the NTS areas, and its germination was negatively influenced by soil mobilization. The intercrop of black oat and vetch provided maximum weed control in soybean.


2020 ◽  
pp. 1-11
Author(s):  
Maxwel C. Oliveira ◽  
Anelise Lencina ◽  
André R. Ulguim ◽  
Rodrigo Werle

Abstract A stakeholder survey was conducted from April through June of 2018 to understand stakeholders’ perceptions and challenges about cropping systems and weed management in Brazil. The dominant crops managed by survey respondents were soybean (73%) and corn (66%). Approximately 75% of survey respondents have grown or managed annual cropping systems with two to three crops per year cultivated in succession. Eighteen percent of respondents manage only irrigated cropping systems, and over 60% of respondents adopt no-till as a standard practice. According to respondents, the top five troublesome weed species in Brazilian cropping systems are horseweed (asthmaweed, Canadian horseweed, and tall fleabane), sourgrass, morningglory, goosegrass, and dayflower (Asiatic dayflower and Benghal dayflower). Among the nine species documented to have evolved resistance to glyphosate in Brazil, horseweed and sourgrass were reported as the most concerning weeds. Other than glyphosate, 31% and 78% of respondents, respectively, manage weeds resistant to acetyl-CoA carboxylase (ACCase) inhibitors and/or acetolactate synthase (ALS) inhibitors. Besides herbicides, 45% of respondents use mechanical, and 75% use cultural (e.g., no-till, crop rotation/succession) weed control strategies. Sixty-one percent of survey respondents adopt cover crops to some extent to suppress weeds and improve soil chemical and physical properties. Nearly 60% of survey respondents intend to adopt the crops that are resistant to dicamba or 2,4-D when available. Results may help practitioners, academics, industry, and policy makers to better understand the bad and the good of current cropping systems and weed management practices adopted in Brazil, and to adjust research, education, technologies priorities, and needs moving forward.


Sign in / Sign up

Export Citation Format

Share Document