Measurement of a soil-water characteristic curve and unsaturated permeability using the evaporation method and the chilled-mirror method

2019 ◽  
Vol 20 (5) ◽  
pp. 368-374 ◽  
Author(s):  
Alfrendo Satyanaga ◽  
Harianto Rahardjo ◽  
Zhe Hao Koh ◽  
Haneena Mohamed
2016 ◽  
Vol 53 (4) ◽  
pp. 717-725 ◽  
Author(s):  
Arezoo Rahimi ◽  
Harianto Rahardjo

The unsaturated permeability function is often estimated from the soil-water characteristic curve (SWCC) of a soil. A complete SWCC measurement can improve the estimation of the unsaturated permeability function. In most laboratories, the SWCC can be measured up to a suction of 100 kPa using a Tempe cell. However, complete measurement of the SWCC is an expensive and time-consuming task. Therefore, this paper presents a new approach to estimate SWCC data points beyond 100 kPa suction to complement the SWCC measured up to a suction of 100 kPa. The new SWCC is then used to estimate the unsaturated permeability function. The proposed approach uses knowledge of the grain-size distribution curve and measured SWCC data at 100 kPa suction to estimate the SWCC data points beyond 100 kPa suction. To verify the proposed procedure, SWCC tests were conducted over a wide range of suctions for coarse kaolin and a triaxial permeameter system was used to directly measure unsaturated permeability of the coarse kaolin. The proposed procedure is found to reduce the variation between unsaturated permeability functions estimated by various estimation models.


2010 ◽  
Vol 12 (3) ◽  
pp. 336-341
Author(s):  
Fei CAI ◽  
Xiaohou SHAO ◽  
Zhenyu WANG ◽  
Mingyong HUANG ◽  
Yaming ZHAI ◽  
...  

2014 ◽  
Vol 919-921 ◽  
pp. 795-799
Author(s):  
Gai Qing Dai ◽  
Dong Fang Tian ◽  
Yao Ruan ◽  
Lang Tian ◽  
You Le Wang

A new soil water characteristic curve (SWCC) experiment contemplating urea concentration is presented in the paper. We focus on the impact of the SWCC considering urea concentration test method for materials selection and introduction, experimental results, and finally, we have conducted some experiments of SWCC and obtained some valuable data which could affect urea concentration. By using linear fitting, an exponential function between water content and suction and urea concentration is established.


2011 ◽  
Vol 261-263 ◽  
pp. 1039-1043
Author(s):  
Yu You Yang ◽  
Qin Xi Zhang ◽  
Gui He Wang ◽  
Jia Xing Yu

A soil water characteristic curve (SWCC) can describe the relationship between unsaturated soil matric suction and water content. By analyzing and researching the test data of the soil water characteristic curve researchers can initially establish the SWCC equation and apply this equation to the actual engineering analysis. In another words, this article is based on the fluid-solid coupling theory of unsaturated soil used to analyze and study the problem of land subsidence caused by tunnel construction. Numerical calculations show that the coupling results agree well with the measured curve works.


1999 ◽  
Vol 36 (2) ◽  
pp. 363-368 ◽  
Author(s):  
Daud W Rassam ◽  
David J Williams

A relationship describing the shear-strength profile of a desiccating soil deposit is essential for the purpose of analysis, especially when a numerical method is adopted where each zone in a discretised grid is assigned an elevation-dependent shear-strength value. The matric-suction profile of a desiccating soil deposit is nonlinear. Up to the air-entry value, an increase in matric suction is associated with a linear increase in shear strength. Beyond air entry, as the soil starts to desaturate, a nonlinear increase in shear strength occurs. The soil-water characteristic curve is stress dependent, as is the shear-strength gain as matric suction increases. In this paper, a three-dimensional, nonlinear regression analysis showed that a power-additive function is suitable to describe the variation of the shear strength of unsaturated soils with matric suction. The proposed function incorporates the effect of normal stress on the contribution of matric suction to the shear strength.Key words: air-entry value, matric suction, nonlinear regression, soil-water characteristic curve, tailings, unsaturated shear strength.


Sign in / Sign up

Export Citation Format

Share Document