scholarly journals Diplotriaena obtusa (Nematoda: Diplotriaenidae) from Barn Swallows (Hirundo rustica) and Cliff Swallows (Petrochelidon pyrrhonota) Collected During Mortality Events in the Upper Midwest, USA

10.1645/19-76 ◽  
2021 ◽  
Vol 107 (4) ◽  
Author(s):  
Michelle L. Michalski ◽  
Emily Kadolph ◽  
Constance L. Roderick ◽  
Julia S. Lankton ◽  
Rebecca A. Cole
1997 ◽  
Vol 75 (7) ◽  
pp. 1176-1183 ◽  
Author(s):  
Horacio de la Cueva ◽  
Robert W. Blake

Aerodynamic power equations predict optimal speeds at which birds ought to fly if they are to maximize time spent in the air on a given energy store (minimum power speed, Vmp), distance covered using a given amount of fuel (maximum range speed, Vmr), and rate of delivering food to the chicks in the nest (Vnest), or maximize the daily energy balance (VDBAL). With the aerodynamic model employed, these speeds are 5.3, 7.0, 7.9, and 8.9 m∙s−1, respectively, for the Barn Swallow, Hirundo rustica. A comparison of the predicted flight speed with both the mean and median flight speeds (8 m∙s−1 in both cases; n = 821) recorded with Doppler radar indicates that Barn Swallows fly at speeds not significantly different from Vnest. The true sample size was unknown, and realistic sample sizes are drawn with bootstrap procedures and compared with those given by the number of measurements (821); no significant differences were found. To test the model, energy requirements for growth, prey density, and time spent foraging were varied independently in a sensitivity analysis. Large but realistic changes in these three variables do not contradict the model and predict speeds within the range measured in the field.


PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0129340 ◽  
Author(s):  
Keith A. Hobson ◽  
Kevin J. Kardynal ◽  
Steven L. Van Wilgenburg ◽  
Gretchen Albrecht ◽  
Antonio Salvadori ◽  
...  

Ardeola ◽  
2021 ◽  
Vol 68 (2) ◽  
Author(s):  
Cosme López-Calderón ◽  
Sergio Magallanes ◽  
Alfonso Marzal ◽  
Javier Balbontín

2020 ◽  
Vol 133 (3) ◽  
pp. 235-245
Author(s):  
Andrew J. Campomizzi ◽  
Zoé M. Lebrun-Southcott ◽  
Kristyn Richardson

Shed-like structures are being built to provide Barn Swallow (Hirundo rustica erythrogaster) nesting habitat in response to population declines. However, Barn Swallow use of these structures is unavailable in the literature. We conducted three manipulative experiments to test if adding conspecific cues (i.e., vocalizations and decoys) to newly-built structures affected prospecting visits by Barn Swallows (1) during pre-breeding, (2) during post-breeding, and (3) during or after broadcasts of vocalizations compared to before broadcasts. Additionally, we monitored nesting following pre- and post-breeding cues. We built one nesting structure with and one without conspecific cues at each of 10 study sites in southern Ontario, Canada where nesting habitat was recently lost. We detected about twice as many Barn Swallows immediately after conspecific broadcasts compared to before. We did not find substantial differences in abundance and interactions with new nesting structures for other comparisons involving conspecific cues. Following pre-breeding cues at 10 sites, six nests were built in three of 10 structures treated with conspecific cues, compared to five nests in four of 10 structures without cues. In the subsequent breeding season following post-breeding cues at eight sites, four nests were built in two of eight structures treated with conspecific cues, compared to four nests in three of eight structures without cues. Conspecific vocalizations appeared to increase prospecting behaviour, but not the number of nests, at new nesting structures. The paucity of nests on new structures suggests that building shed-like structures may not be an effective method of mitigating loss of nesting habitat.


The Auk ◽  
2002 ◽  
Vol 119 (1) ◽  
pp. 213-216 ◽  
Author(s):  
A. Barbosa ◽  
S. Merino ◽  
Fde Lope ◽  
A. P. Møller

Abstract Parasites may affect host behavior in a number of ways, including their locomotory performance. We investigated whether the number of holes produced by the feather louse (Myrsidea rustica) affected flight behavior in adult male Barn Swallows (Hirundo rustica) by video-taping flight performance of individuals during escape and level flight. Percentage of time spent flapping during foraging flight was positively related to number of holes, but not to other flight parameters such as wingbeat frequency. These results suggest indirect effects of feather lice on host performance that must be considered together with effects of thermoregulation and feather breakage. This is the first report of an effect of parasite load on flight behavior.


The Condor ◽  
2004 ◽  
Vol 106 (2) ◽  
pp. 390-395 ◽  
Author(s):  
Kevin J. McGraw ◽  
Kazumasa Wakamatsu ◽  
Shosuke Ito ◽  
Paul M. Nolan ◽  
Pierre Jouventin ◽  
...  

Abstract The two main pigment types in bird feathers are the red, orange, and yellow carotenoids and the black, gray, and brown melanins. Reports conflict, however, regarding the potential for melanins to produce yellow colors or for carotenoids to produce brown plumages. We used high-performance liquid chromatography to analyze carotenoids and melanins present in the yellow and brown feathers of five avian species: Eastern Bluebirds (Sialia sialis), Barn Swallows (Hirundo rustica), King Penguins (Aptenodytes patagonicus), Macaroni Penguins (Eudyptes chrysolophus), and neonatal chickens (Gallus domesticus). In none of these species did we detect carotenoid pigments in feathers. Although carotenoids are reportedly contained in the ventral plumage of European Barn Swallows (Hirundo rustica rustica), we instead found high concentrations of both eumelanins and phaeomelanins in North American Barn Swallows (H. r. erythrogaster). We believe we have detected a new form of plumage pigment that gives penguin and domestic- chick feathers their yellow appearance. No Puedes Juzgar un Pigmento por su Color: Contenido de Carotenoide y Melanina de Plumas Amarillas y Marrones en Golondrinas, Azulejos, Pingüinos y Gallinas Domésticas Resumen. Los dos tipos principales de pigmentos que las aves incorporan en sus plumas son carotenoides, para desarrollar plumajes rojo, naranja o amarillo, y melaninas, para adquirir coloración negra, marrón, gris o tonalidades color tierra. Sin embargo, existe información conflictiva sobre la potencial coloración de plumas amarillas basadas en melanina y la presencia de caroteniodes en el plumaje marrón de ciertas especies. En este estudio, usamos cromatografía líquida de alto rendimiento para analizar los tipos y cantidades de carotenoides y melaninas presentes en las plumas amarillas y marrones de cinco especies de aves: el azulejo Sialia sialis y la golondrina Hirundo rustica, los pingüinos Aptenodytes patagonicus y Eudyptes chrysolophus y el plumón natal amarillo de la gallina doméstica Gallus domesticus. En ninguna de estas especies detectamos pigmentos carotenoides en las plumas. A pesar de que los carotenoides han sido encontrados en el plumaje ventral de la golondrina Hirundo rustica rustica, nosotros en cambio encontramos altas concentraciones de eumelaninas y feomelaninas en H. r. erythrogaster y en azulejos que variaron entre individuos y regiones de plumaje. Creemos que hemos detectado una nueva forma de pigmento de plumaje que le da a las plumas de pingüinos y pollos domésticos su apariencia amarilla.


Sign in / Sign up

Export Citation Format

Share Document