scholarly journals Adjusting global extinction rates to account for taxonomic susceptibility

Paleobiology ◽  
2008 ◽  
Vol 34 (4) ◽  
pp. 434-455 ◽  
Author(s):  
Steve C. Wang ◽  
Andrew M. Bush

Studies of extinction in the fossil record commonly involve comparisons of taxonomic extinction rates, often expressed as the percentage of taxa (e.g., families or genera) going extinct in a time interval. Such extinction rates may be influenced by factors that do not reflect the intrinsic severity of an extinction trigger. Two identical triggering events (e.g., bolide impacts, sea level changes, volcanic eruptions) could lead to different taxonomic extinction rates depending on factors specific to the time interval in which they occur, such as the susceptibility of the fauna or flora to extinction, the stability of food webs, the positions of the continents, and so on. Thus, it is possible for an extinction event with a higher taxonomic extinction rate to be caused by an intrinsically less severe trigger, compared to an event with a lower taxonomic extinction rate.Here, we isolate the effects of taxonomic susceptibility on extinction rates. Specifically, we quantify the extent to which the taxonomic extinction rate in a substage is elevated or depressed by the vulnerability to extinction of classes extant in that substage. Using a logistic regression model, we estimate that the taxonomic susceptibility of marine fauna to extinction has generally declined through the Phanerozoic, and we adjust the observed extinction rate in each substage to estimate the intrinsic extinction severity more accurately. We find that mass extinctions do not generally occur during intervals of unusually high susceptibility, although susceptibility sometimes increases in post-extinction recovery intervals. Furthermore, the susceptibility of specific animal classes to extinction is generally similar in times of background and mass extinction, providing no evidence for differing regimes of extinction selectivity. Finally, we find an inverse correlation between extinction rate within substages and the evenness of diversity of major taxonomic groups, but further analyses indicate that low evenness itself does not cause high rates of extinction.

Paleobiology ◽  
2007 ◽  
Vol 33 (3) ◽  
pp. 435-454 ◽  
Author(s):  
Andrew Z. Krug ◽  
Mark E. Patzkowsky

AbstractUnderstanding what drives global diversity requires knowledge of the processes that control diversity and turnover at a variety of geographic and temporal scales. This is of particular importance in the study of mass extinctions, which have disproportionate effects on the global ecosystem and have been shown to vary geographically in extinction magnitude and rate of recovery.Here, we analyze regional diversity and turnover patterns for the paleocontinents of Laurentia, Baltica, and Avalonia spanning the Late Ordovician mass extinction and Early Silurian recovery. Using a database of genus occurrences for inarticulate and articulate brachiopods, bivalves, anthozoans, and trilobites, we show that sampling-standardized diversity trends differ for the three regions. Diversity rebounded to pre-extinction levels within 5 Myr in the paleocontinent of Laurentia, compared with 15 Myr or longer for Baltica and Avalonia. This increased rate of recovery in Laurentia was due to both lower Late Ordovician extinction rates and higher Early Silurian origination rates relative to the other continents. Using brachiopod data, we dissected the Rhuddanian recovery into genus origination and invasion. This analysis revealed that standing diversity in the Rhuddanian consisted of a higher proportion of invading taxa in Laurentia than in either Baltica or Avalonia. Removing invading genera from diversity counts caused Rhuddanian diversity to fall in Laurentia. However, Laurentian diversity still rebounded to pre-extinction levels within 10 Myr of the extinction event, indicating that genus origination rates were also higher in Laurentia than in either Baltica or Avalonia. Though brachiopod diversity in Laurentia was lower than in the higher-latitude continents prior to the extinction, increased immigration and genus origination rates made it the most diverse continent following the extinction. Higher rates of origination in Laurentia may be explained by its large size, paleogeographic location, and vast epicontinental seas. It is possible that the tropical position of Laurentia buffered it somewhat from the intense climatic fluctuations associated with the extinction event, reducing extinction intensities and allowing for a more rapid rebound in this region. Hypotheses explaining the increased levels of invasion into Laurentia remain largely untested and require further scrutiny. Nevertheless, the Late Ordovician mass extinction joins the Late Permian and end-Cretaceous as global extinction events displaying an underlying spatial complexity.


2016 ◽  
Vol 113 (25) ◽  
pp. 6868-6873 ◽  
Author(s):  
James S. Crampton ◽  
Rosie D. Cody ◽  
Richard Levy ◽  
David Harwood ◽  
Robert McKay ◽  
...  

It is not clear how Southern Ocean phytoplankton communities, which form the base of the marine food web and are a crucial element of the carbon cycle, respond to major environmental disturbance. Here, we use a new model ensemble reconstruction of diatom speciation and extinction rates to examine phytoplankton response to climate change in the southern high latitudes over the past 15 My. We identify five major episodes of species turnover (origination rate plus extinction rate) that were coincident with times of cooling in southern high-latitude climate, Antarctic ice sheet growth across the continental shelves, and associated seasonal sea-ice expansion across the Southern Ocean. We infer that past plankton turnover occurred when a warmer-than-present climate was terminated by a major period of glaciation that resulted in loss of open-ocean habitat south of the polar front, driving non-ice adapted diatoms to regional or global extinction. These findings suggest, therefore, that Southern Ocean phytoplankton communities tolerate “baseline” variability on glacial–interglacial timescales but are sensitive to large-scale changes in mean climate state driven by a combination of long-period variations in orbital forcing and atmospheric carbon dioxide perturbations.


Paleobiology ◽  
1985 ◽  
Vol 11 (2) ◽  
pp. 227-233 ◽  
Author(s):  
Michael L. McKinney

A nonparametric analysis of the extinction patterns of 10 major marine invertebrate groups at the five most profound mass extinction events leads to five observations: (1) At each event some taxonomic groups were affected much more than others. (2) There is little consistency among events in terms of which taxonomic groups were most or least affected; however, adaptive groupings do exhibit consistency: benthic, mobile organisms suffered significantly fewer extinctions than sessile suspension feeders, while the pelagic organisms apparently suffered the most. (3) There are no convincing patterns of interrelated extinctions among taxonomic groups. (4) No group exhibits a persistent tendency through time for a relative increase or decrease in their extinction rate at the events. (5) Some relationships are seen between the extinction patterns of three pairs of events; the Late Ordovician and Late Devonian events exhibit a significantly similar pattern (the same taxonomic groups suffered the most extinction in both cases) as do the Late Triassic and Late Cretaceous events. The Late Permian and Late Cretaceous events show a significantly inverse pattern (the most affected groups in the former were among the least affected in the latter). Upon examination, these observations, notably 1, 2, and 5, are consonant with current scenarios of the effects of catastrophic bolide impacts on marine fauna.


Paleobiology ◽  
2007 ◽  
Vol 33 (3) ◽  
pp. 435-454 ◽  
Author(s):  
Andrew Z. Krug ◽  
Mark E. Patzkowsky

AbstractUnderstanding what drives global diversity requires knowledge of the processes that control diversity and turnover at a variety of geographic and temporal scales. This is of particular importance in the study of mass extinctions, which have disproportionate effects on the global ecosystem and have been shown to vary geographically in extinction magnitude and rate of recovery.Here, we analyze regional diversity and turnover patterns for the paleocontinents of Laurentia, Baltica, and Avalonia spanning the Late Ordovician mass extinction and Early Silurian recovery. Using a database of genus occurrences for inarticulate and articulate brachiopods, bivalves, anthozoans, and trilobites, we show that sampling-standardized diversity trends differ for the three regions. Diversity rebounded to pre-extinction levels within 5 Myr in the paleocontinent of Laurentia, compared with 15 Myr or longer for Baltica and Avalonia. This increased rate of recovery in Laurentia was due to both lower Late Ordovician extinction rates and higher Early Silurian origination rates relative to the other continents. Using brachiopod data, we dissected the Rhuddanian recovery into genus origination and invasion. This analysis revealed that standing diversity in the Rhuddanian consisted of a higher proportion of invading taxa in Laurentia than in either Baltica or Avalonia. Removing invading genera from diversity counts caused Rhuddanian diversity to fall in Laurentia. However, Laurentian diversity still rebounded to pre-extinction levels within 10 Myr of the extinction event, indicating that genus origination rates were also higher in Laurentia than in either Baltica or Avalonia. Though brachiopod diversity in Laurentia was lower than in the higher-latitude continents prior to the extinction, increased immigration and genus origination rates made it the most diverse continent following the extinction. Higher rates of origination in Laurentia may be explained by its large size, paleogeographic location, and vast epicontinental seas. It is possible that the tropical position of Laurentia buffered it somewhat from the intense climatic fluctuations associated with the extinction event, reducing extinction intensities and allowing for a more rapid rebound in this region. Hypotheses explaining the increased levels of invasion into Laurentia remain largely untested and require further scrutiny. Nevertheless, the Late Ordovician mass extinction joins the Late Permian and end-Cretaceous as global extinction events displaying an underlying spatial complexity.


Paleobiology ◽  
2015 ◽  
Vol 41 (4) ◽  
pp. 633-639 ◽  
Author(s):  
John Alroy

AbstractA new turnover rate metric is introduced that combines simplicity and precision. Like the related three-timer and gap-filler equations, it involves first identifying a cohort of taxa sampled in the time interval preceding the one of interest (call the intervalsi0andi1). Taxa sampled ini0andi1are two-timers (t2); those sampled ini0andi2but noti1are part-timers (p); and taxa sampled only in eitheri1,i2, ori3are newly notated here as eithers1,s2, ors3. The gap-filler extinction proportion can be reformulated as (s1−s3)/(t2+p). The method proposed here is to substitutes3with the second-highest of the three counts when the expected orderings1≥s2≥s3is violated. In simulation, this new estimator yields values that are highly correlated with those produced by the gap-filler equation but more precise. In particular, it rarely produces highly negative values even when sample sizes are quite small. It is mildly upwards biased when sampling is extremely poor and turnover rates are extremely low, but it is otherwise highly accurate. Examples of Phanerozoic extinction rates for four major marine invertebrate groups are given to illustrate the method’s improved precision. Based on the results, the procedure is recommended for general use.


2007 ◽  
Vol 44 (10) ◽  
pp. 1397-1411 ◽  
Author(s):  
Carmen Arias

The extinction and recovery of Ostracoda at the Pliensbachian–Toarcian (P–T) boundary are analyzed based on a database of taxonomically revised Pliensbachian to Toarcian transition ostracod assemblages. In contrast to earlier assertions, the results of this study indicate that ostracod extinction rates were significant in comparison with other marine invertebrates. An extinction rate of 54% has been calculated for upper Pliensbachian ostracod species occurring in more than one section. Diversification took place in the latest Pliensbachian (Spinatum Zone) and early Toarcian (Tenuicostatum Zone), whereas diversity decrease occurred in the middle early Toarcian (Strangewaysi Subzone, Serpentinus Zone). This notable diversity decline in the early Toarcian corresponds to a global mass extinction time, whose peak has been documented in the Tenuicostatum Zone. Meanwhile, the ostracod mass extinction occurred within the Serpentinus Zone and was followed by radiation and recovery in the succeeding Bifrons Zone. Similar diversity changes of ostracods are observed in other European areas, although in the Cordillera Ibérica, the demise began later. Many aspects of this event are still debated, and there is no common cause or single set of climatic or environmental changes common to this event. The supposed extinction-causing environmental changes resulting from anoxia episodes are unclear and are unlikely to have been of sufficient intensity or geographic extent to cause this global extinction. In this paper, the decrease in marine species diversity is explained by a new palaeoceanographic scenario, in which a rapid global cooling episode is regarded as the ultimate cause.


Author(s):  
Nicolas Chazot ◽  
Fabien L. Condamine ◽  
Gytis Dudas ◽  
Carlos Peña ◽  
Pavel Matos-Maraví ◽  
...  

AbstractThe latitudinal diversity gradient (LDG) is arguably one of the most striking patterns in nature. The global increase in species richness toward the tropics across continents and taxonomic groups stimulated the formulation of many hypotheses to explain the underlying mechanisms of this pattern. We evaluated several of these hypotheses to explain spatial diversity patterns in the butterfly family, Nymphalidae, by assessing the contributions of speciation, extinction, and dispersal to the LDG, and also the extent to which these processes differ among regions at the same latitude. We generated a new, time-calibrated phylogeny of Nymphalidae based on 10 gene fragments and containing ca. 2,800 species (∼45% of extant diversity). Neither speciation nor extinction rate variations consistently explain the LDG among regions because temporal diversification dynamics differ greatly across longitude. For example, we found that Neotropical nymphalid diversity results from low extinction rates, not high speciation rates, and that biotic interchanges with other regions were rare. Southeast Asia was also characterized by a low speciation rate but, unlike the Neotropics, was the main source of dispersal events through time. Our results suggest that global climate change throughout the Cenozoic, particularly during the Eocene-Oligocene transition, combined with the conserved ancestral tropical niches, played a major role in generating the modern LDG of butterflies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nicolas Chazot ◽  
Fabien L. Condamine ◽  
Gytis Dudas ◽  
Carlos Peña ◽  
Ullasa Kodandaramaiah ◽  
...  

AbstractThe global increase in species richness toward the tropics across continents and taxonomic groups, referred to as the latitudinal diversity gradient, stimulated the formulation of many hypotheses to explain the underlying mechanisms of this pattern. We evaluate several of these hypotheses to explain spatial diversity patterns in a butterfly family, the Nymphalidae, by assessing the contributions of speciation, extinction, and dispersal, and also the extent to which these processes differ among regions at the same latitude. We generate a time-calibrated phylogeny containing 2,866 nymphalid species (~45% of extant diversity). Neither speciation nor extinction rate variations consistently explain the latitudinal diversity gradient among regions because temporal diversification dynamics differ greatly across longitude. The Neotropical diversity results from low extinction rates, not high speciation rates, and biotic interchanges with other regions are rare. Southeast Asia is also characterized by a low speciation rate but, unlike the Neotropics, is the main source of dispersal events through time. Our results suggest that global climate change throughout the Cenozoic, combined with tropical niche conservatism, played a major role in generating the modern latitudinal diversity gradient of nymphalid butterflies.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Thomas A. Neubauer ◽  
Torsten Hauffe ◽  
Daniele Silvestro ◽  
Jens Schauer ◽  
Dietrich Kadolsky ◽  
...  

AbstractThe Cretaceous–Paleogene mass extinction event 66 million years ago eradicated three quarters of marine and terrestrial species globally. However, previous studies based on vertebrates suggest that freshwater biota were much less affected. Here we assemble a time series of European freshwater gastropod species occurrences and inferred extinction rates covering the past 200 million years. We find that extinction rates increased by more than one order of magnitude during the Cretaceous–Paleogene mass extinction, which resulted in the extinction of 92.5% of all species. The extinction phase lasted 5.4 million years and was followed by a recovery period of 6.9 million years. However, present extinction rates in European freshwater gastropods are three orders of magnitude higher than even these revised estimates for the Cretaceous–Paleogene mass extinction. Our results indicate that, unless substantial conservation effort is directed to freshwater ecosystems, the present extinction crisis will have a severe impact to freshwater biota for millions of years to come.


Sign in / Sign up

Export Citation Format

Share Document