Stable isotope evidence for changes in dietary niche partitioning among hadrosaurian and ceratopsian dinosaurs of the Hell Creek Formation, North Dakota

Paleobiology ◽  
2008 ◽  
Vol 34 (4) ◽  
pp. 534-552 ◽  
Author(s):  
Henry C. Fricke ◽  
Dean A. Pearson

Questions related to dinosaur behavior can be difficult to answer conclusively by using morphological studies alone. As a complement to these approaches, carbon and oxygen isotope ratios of tooth enamel can provide insight into habitat and dietary preferences of herbivorous dinosaurs. This approach is based on the isotopic variability in plant material and in surface waters of the past, which is in turn reflected by carbon and oxygen isotope ratios of animals that ingested the organic matter or drank the water. Thus, it has the potential to identify and characterize dietary and habitat preferences for coexisting taxa.In this study, stable isotope ratios from coexisting hadrosaurian and ceratopsian dinosaurs of the Hell Creek Formation of North Dakota are compared for four different stratigraphic levels. Isotopic offsets between tooth enamel and tooth dentine, as well as taxonomic differences in means and in patterns of isotopic data among taxa, indicate that primary paleoecological information is preserved. The existence of taxonomic offsets also provides the first direct evidence for dietary niche partitioning among these herbivorous dinosaur taxa. Of particular interest is the observation that the nature of this partitioning changes over time: for some localities ceratopsian dinosaurs have higher carbon and oxygen isotope ratios than hadrosaurs, indicating a preference for plants living in open settings near the coast, whereas for other localities isotope ratios are lower, indicating a preference for plants in the understory of forests. In most cases the isotope ratios among hadrosaurs are similar and are interpreted to represent a dietary preference for plants of the forest canopy. The inferred differences in ceratopsian behavior are suggested to represent a change in vegetation cover and hence habitat availability in response to sea level change or to the position of river distributaries. Given our current lack of taxonomic resolution, it is not possible to determine if dietary and habitat preferences inferred from stable isotope data are associated with single, or multiple, species of hadrosaurian/ceratopsian dinosaurs.

Paleobiology ◽  
2009 ◽  
Vol 35 (2) ◽  
pp. 270-288 ◽  
Author(s):  
Henry C. Fricke ◽  
Raymond R. Rogers ◽  
Terry A. Gates

Stable carbon and oxygen isotope ratios were measured for carbonate in samples of hadrosaurid tooth enamel and dentine, and gar scale ganoine and dentine from five geologically “contemporaneous“ (two-million-year resolution) and geographically distant late Campanian formations (Two Medicine, Dinosaur Park, Judith River, Kaiparowits, and Fruitland) in the Western Interior Basin. In all cases, isotopic offsets were observed between enamel and dentine from the same teeth, with dentine being characterized by higher and more variable carbon and oxygen isotope ratios. Isotopic offsets were also observed between gar ganoine and hadrosaur enamel in all sites analyzed. Both of these observations indicate that diagenetic overprinting of enamel isotope ratios did not entirely obfuscate primary signals. Decreases in carbon and oxygen isotope ratios were observed in hadrosaur enamel from east to west, and overlap in isotope ratios occurred only between two of the sampled sites (Dinosaur Park and Judith River Formations).The lack of isotopic overlap for enamel among localities could be due to diagenetic resetting of isotope ratios such that they reflect local groundwater effects rather than primary biogenic inputs. However, the large range in carbon isotope ratios, the consistent taxonomic offsets for enamel/ganoine data, and comparisons of enamel-dentine data from the same teeth all suggest that diagenesis is not the lone driver of the signal. In the absence of major alteration, the mostly likely explanation for the isotopic patterns observed is that hadrosaurids from the targeted formations were eating plants and drinking waters with distinct isotopic ratios. One implication of this reconstruction is that hadrosaurids in the Late Cretaceous of the Western Interior did not migrate to an extent that would obscure local isotopic signatures.


Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 862 ◽  
Author(s):  
Charles J. Watkinson ◽  
Peter Gasson ◽  
Gareth O. Rees ◽  
Markus Boner

The stable isotope ratios of oxygen, hydrogen, carbon and sulfur from extracted wood of 87 samples of oaks from the United States were analysed. Relationships with climate variables and the stable isotope ratios of the 69 training dataset samples were investigated to a monthly resolution using long-term monthly mean climate data from NASA and the University of East Anglia’s Climate Research Unit, in conjunction with forecast data for hydrogen and oxygen isotope ratios in precipitation. These relationships were used to construct model isoscapes for oxygen, hydrogen, carbon and sulfur for US oak with the aim of using them to forecast isotopic patterns in areas that were not sampled and predict values in samples not used to construct the models. The leading predictors for isoscape generation were oxygen isotope ratios in January precipitation for oak oxygen isotope ratios, hydrogen isotope ratios in July precipitation for oak hydrogen isotope ratios, water vapour in April for carbon isotope ratios, and reflected shortwave radiation in March in combination with sulfate concentration in May for oak sulfur isotopes. The generated isoscapes can be used to show regions an unknown sample may have originated from with a resolution dependent on the rarity of the stable isotope signature within the United States. The models were assessed using the data of 18 samples of georeferenced oak. The assessment found that 100% of oxygen, 94% of hydrogen, 78% of carbon, and 94% of sulfur isotope ratios in the 18 test dataset samples fell within two standard deviations of the isoscape models. Using the results of the isoscapes in combination found that there were 4/18 test samples which did not fall within two standard deviations of the four models, this is largely attributed to the lower predictive power of the carbon isoscape model in conjunction with high local variability in carbon isotope ratios in both the test and training data. The method by which this geographic origin method has been developed will be useful to combat illegal logging and to validate legal supply chains for the purpose of good practice due diligence.


2005 ◽  
Vol 110 (G2) ◽  
pp. n/a-n/a ◽  
Author(s):  
John S. Roden ◽  
David R. Bowling ◽  
Nate G. McDowell ◽  
Barbara J. Bond ◽  
James R. Ehleringer

Sign in / Sign up

Export Citation Format

Share Document