scholarly journals Role of aspartate 351 in transactivation and active conformation of estrogen receptor α

2005 ◽  
Vol 35 (3) ◽  
pp. 449-464 ◽  
Author(s):  
Jeong Hoon Kim ◽  
Mee Hyun Lee ◽  
Byoung Jin Kim ◽  
Jun Hyun Kim ◽  
Seong Jun Han ◽  
...  

Estrogen-dependent transcriptional activation by estrogen receptor α (ERα) depends on the conformation of helices 3 and 12 in the ligand-binding domain. To better understand the function of helix 3 in ERα, we examined the role of charged residues, which are conserved in most steroid receptors in helix 3, in estrogen-dependent transactivation. The replacement of Asp-351 with lysine (D351K) or leucine (D351 L) completely abolished estrogen-dependent transactivation without affecting estrogen-binding, DNA-binding and homodimerization activities in ERα. The mutations dramatically reduced the ligand-dependent activation function 2 activity and impaired the ability of ERα to bind p160 coactivators. In addition, the D351K mutant effectively inhibited the transcriptional activation activity of wild-type ERα. Furthermore Asp-351 was required not only for the estrogen-dependent conformational change of wild-type ERα but also for the constitutive transcriptional activity and ligand-independent active conformation of ERα mutant Y537N. Similarly, in the orphan nuclear receptor called estrogen-related receptor 3 (ERR3), the replacement of Asp-273 (the corresponding amino acid to Asp-351 in ERα) with lysine abolished constitutive transcriptional activity of ERR3 without affecting DNA-binding activity and impaired the ability of the receptor to interact with p160 coactivators. These data suggest a role of Asp-351 in inducing and stabilizing the active conformation of ERα, and our results experimentally confirm the concept that Asp-351 in helix 3 interacts with the amide hydrogen of L540 in helix 12 to form a transcriptionally competent surface for binding p160 coactivators.

2003 ◽  
Vol 17 (2) ◽  
pp. 203-208 ◽  
Author(s):  
Marie K. Lindberg ◽  
Sofia Movérare ◽  
Stanko Skrtic ◽  
Hui Gao ◽  
Karin Dahlman-Wright ◽  
...  

Abstract Estrogen is of importance for the regulation of adult bone metabolism. The aim of the present study was to determine the role of estrogen receptor-β (ERβ) in vivo on global estrogen-regulated transcriptional activity in bone. The effect of estrogen in bone of ovariectomized mice was determined using microarray analysis including 9400 genes. Most of the genes (95% = 240 genes) that were increased by estrogen in wild-type (WT) mice were also increased by estrogen in ERβ-inactivated mice. Interestingly, the average stimulatory effect of estrogen on the mRNA levels of these genes was 85% higher in ERβ-inactivated than in WT mice, demonstrating that ERβ reduces estrogen receptor-α (ERα)-regulated gene transcription in bone. The average stimulatory effect of estrogen on estrogen-regulated bone genes in ERα-inactivated mice was intermediate between that seen in WT and ERαβ double-inactivated mice. Thus, ERβ inhibits ERα-mediated gene transcription in the presence of ERα, whereas, in the absence of ERα, it can partially replace ERα. In conclusion, our in vivo data indicate that an important physiological role of ERβ is to modulate ERα-mediated gene transcription supporting a “Ying Yang” relationship between ERα and ERβ in mice.


1993 ◽  
Vol 13 (3) ◽  
pp. 1572-1582
Author(s):  
P Dobrzanski ◽  
R P Ryseck ◽  
R Bravo

RelB, a member of the Rel family of transcription factors, can stimulate promoter activity in the presence of p50-NF-kappa B or p50B/p49-NF-kappa B in mammalian cells. Transcriptional activation analysis reveals that the N and C termini of RelB are required for full transactivation in the presence of p50-NF-kappa B. RelB/p50-NF-kappa B hybrid molecules containing the Rel homology domain of p50-NF-kappa B and the N and C termini of RelB have high transcriptional activity compared with wild-type p50-NF-kappa B. The N and C termini of RelB cooperate in transactivation in cis or trans configuration. Alterations in the structure of the leucine zipper-like motif present in the N terminus of RelB significantly decrease the transcriptional capacity of RelB and of different RelB/p50-NF-kappa B hybrid molecules.


1993 ◽  
Vol 13 (3) ◽  
pp. 1572-1582 ◽  
Author(s):  
P Dobrzanski ◽  
R P Ryseck ◽  
R Bravo

RelB, a member of the Rel family of transcription factors, can stimulate promoter activity in the presence of p50-NF-kappa B or p50B/p49-NF-kappa B in mammalian cells. Transcriptional activation analysis reveals that the N and C termini of RelB are required for full transactivation in the presence of p50-NF-kappa B. RelB/p50-NF-kappa B hybrid molecules containing the Rel homology domain of p50-NF-kappa B and the N and C termini of RelB have high transcriptional activity compared with wild-type p50-NF-kappa B. The N and C termini of RelB cooperate in transactivation in cis or trans configuration. Alterations in the structure of the leucine zipper-like motif present in the N terminus of RelB significantly decrease the transcriptional capacity of RelB and of different RelB/p50-NF-kappa B hybrid molecules.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 613-613 ◽  
Author(s):  
Christopher B. Miller ◽  
Charles G. Mullighan ◽  
James R. Downing

Abstract Using genome-wide profiling of DNA copy number abnormalities using high-resolution single nucleotide polymorphism arrays, we recently identified a high frequency of genomic aberrations involving the PAX5 gene in pediatric B-progenitor ALL. PAX5 is a critical transcriptional regulator of B lymphocyte commitment and differentiation. Mutations, including partial tandem duplication, complete and focal deletions, point mutations in the DNA-binding or transactivation domain, and three translocations that encode PAX5 fusion proteins were observed in 31.7% of B-ALL. The PAX5 deletions were mono-allelic and resulted in either loss of the entire gene, or the deletion of only a subset of the exons leading to the production of PAX5 proteins that lacked the DNA-binding paired domain (exons 2–4) and/or the transcriptional activation domain (exons 7–10). In murine systems, the complete absence of PAX5 results in the arrest of B-cell development at the pro-B-cell stage prior to immunoglobulin heavy chain rearrangement, whereas haploinsufficiency leads to a partial block in B-cell development. Importantly, in the primary leukemia samples, the mono-allelic loss of PAX5 was associated with reduced expression of PAX5 by flow cytometry and quantitative RT-PCR, suggesting that haploinsufficiency contributes to the block in differentiation characteristic of B-progenitor ALL. To determine if the other identified PAX5 mutations result in hypomorphic alleles, we analyzed the DNA-binding and transcriptional activity of the encoded proteins. DNA-binding activity was assessed by electrophoretic mobility gel-shift assays using a labeled oligonucleotide probes from the promoters of the PAX5 target genes CD19 and CD79A (mb-1), and transcriptional activity was assessed by a luciferase-based reporter assays using the PAX5-dependent reporter plasmid, luc-CD19. Analysis was performed on the paired-domain mutants P80R and P34Q, the focal deletions Δe2-5, Δe2-6, Δe2-7, Δe2-8, and Δe6-8, and the PAX5-ETV6 and PAX5-FOXP1 translocation-encoded fusion proteins. As expected, DNA-binding was abrogated in deletion mutants that lacked the paired domain (Δe2-5, Δe2-6, Δe2-7, Δe2-8). In contrast, the PAX5 Δe6-8, which retains the paired DNA binding domain but lacks a significant portion of the transcriptional regulatory domain, had normal DNA binding activity. Importantly, the paired domain point mutants impaired DNA-binding in a promoter specific manner, with P80R having a marked reduction in binding to both the CD19 and mb-1 promoters, whereas P34Q showed reduced binding only to the mb-1 promoter. Surprisingly, the PAX5-ETV6 and the PAX5-FOXP1 translocations had markedly reduced DNA-binding activity despite retention of the PAX5 paired domain. As expected each of the mutants with impaired or absent DNA-binding activity were found to have markedly reduced transcriptional activity when compared to wild type PAX5. Similarly, those mutants with altered or deleted transcriptional activation domains had reduced transcriptional activity, as did the two PAX5 translocation-encoded fusion proteins (PAX5-ETV6 and PAX5-FOXP1). Moreover, transfection of increasing amounts of PAX5-ETV6 or PAX5-FOXP1 together with a fixed amount of wild type PAX5 revealed that the fusion proteins competitively inhibit the transcriptional activation of wild type PAX5. Taken together, these data indicate that the identified PAX5 mutations impair DNA-binding and/or transcriptional activity. This loss of normal PAX5 function in turn would contribute to the observed arrest in B-cell development seen in ALL.


2005 ◽  
Vol 25 (9) ◽  
pp. 3506-3518 ◽  
Author(s):  
Motomasa Ihara ◽  
Hideki Yamamoto ◽  
Akira Kikuchi

ABSTRACT We have previously shown that modification of Tcf-4, a transcription factor in the Wnt pathway, with SUMO by PIASy, a SUMO E3 ligase, enhances its transcriptional activity. Since PIASy itself was also modified with SUMO-1, we studied the role of sumoylation of PIASy in the regulation of Tcf-4. Lys35 was found to be a sumoylation site of PIASy. PIASyK35R, in which Lys35 was mutated to Arg, did not enhance sumoylation of Tcf-4, although this PIASy mutant did not lose the ligase activity of sumoylation for other proteins. Wild-type PIASy and PIASyK35R showed a distinct distribution in the nucleus, although both were colocalized with Tcf-4. Promyelocytic leukemia protein, which is involved in transcriptional regulation, was associated with PIASyK35R more frequently than wild-type PIASy in the nucleus. PIASyK35R could not stimulate the transcriptional activity of Tcf-4 under the conditions in which wild-type PIASy enhanced it. Conjugation of SUMO-1 to the amino terminus of PIASyK35R neither enhanced sumoylation of Tcf-4 nor stimulated the transcriptional activity of Tcf-4. These results suggest that sumoylation of Lys35 in PIASy determines the nuclear localization of PIASy and that it is necessary for PIASy-dependent sumoylation and transcriptional activation of Tcf-4.


2004 ◽  
Vol 279 (15) ◽  
pp. 14763-14771 ◽  
Author(s):  
Vida Senkus Melvin ◽  
Chuck Harrell ◽  
James S. Adelman ◽  
W. Lee Kraus ◽  
Mair Churchill ◽  
...  

1998 ◽  
Vol 18 (4) ◽  
pp. 1978-1984 ◽  
Author(s):  
Peteranne B. Joel ◽  
Jeffrey Smith ◽  
Thomas W. Sturgill ◽  
Tracey L. Fisher ◽  
John Blenis ◽  
...  

ABSTRACT The estrogen receptor α (ER), a member of the steroid receptor superfamily, contains an N-terminal hormone-independent transcriptional activation function (AF-1) and a C-terminal hormone-dependent transcriptional activation function (AF-2). Here, we used in-gel kinase assays to determine that pp90rsk1 activated by either epidermal growth factor (EGF) or phorbol myristate acetate specifically phosphorylates Ser-167 within AF-1. In vitro kinase assays demonstrated that pp90rsk1 phosphorylates the N terminus of the wild-type ER but not of a mutant ER in which Ser-167 was replaced by Ala. In vivo, EGF stimulated phosphorylation of Ser-167 as well as Ser-118. Ectopic expression of active pp90rsk1increased the level of phosphorylation of Ser-167 compared to that of either a mutant pp90rsk1, which is catalytically inactive in the N-terminal kinase domain, or to that of vector control. The ER formed a stable complex with the mutant pp90rsk1in vivo. Transfection of the mutant pp90rsk1 depressed ER-dependent transcription of both a wild-type ER and a mutant ER that had a defective AF-2 domain (ER TAF-1). Furthermore, replacing either Ser-118 or Ser-167 with Ala in ER TAF-1 showed similar decreases in transcription levels. A double mutant in which both Ser-118 and Ser-167 were replaced with Ala demonstrated a further decrease in transcription compared to either of the single mutations. Taken together, our results strongly suggest that pp90rsk1 phosphorylates Ser-167 of the human ER in vivo and that Ser-167 aids in regulating the transcriptional activity of AF-1 in the ER.


Sign in / Sign up

Export Citation Format

Share Document