scholarly journals The effect of disease-associated HRPT2 mutations on splicing

2009 ◽  
Vol 201 (3) ◽  
pp. 387-396 ◽  
Author(s):  
Michael A Hahn ◽  
Julie McDonnell ◽  
Deborah J Marsh

Mutations in the tumour suppressor HRPT2 occur in patients with parathyroid carcinoma, kidney tumours and Hyperparathyroidism–Jaw Tumour syndrome. Disruption of exonic splicing through mutation of donor/acceptor splice sites or exonic splice enhancer (ESE) sites leads to loss of function of a number of major tumour suppressors including BRCA1, APC and MLH1. Given that the effect of HRPT2 mutations on splicing has not been widely studied, we used an in vitro splicing assay to determine whether 17 HRPT2 mutations located in hot-spot and other exons predicted to disrupt ESE consensus sites led to aberrant splicing. Using two independent web-based prediction programs, the majority of these mutations were predicted to disrupt ESE consensus sites; however, aberrant splicing of HRPT2 transcripts was not observed. Canonical donor or acceptor splice site mutations were also investigated using this splicing assay and transcripts assessed from tumour tissue. Splice site mutations were shown to lead to either exon skipping or retention of intronic sequences through the use of cryptic splice sites comprised of non-classical splicing signals. Aberrant splicing caused by disruption of ESE sites does not appear to have a major role in HRPT2-associated disease; however, premature truncation of parafibromin as the result of canonical donor or acceptor splice site mutations is associated with pathogenicity. Functional splicing assays must be undertaken in order to confirm web-based software predictions of the modification of putative ESE sites by disease-associated mutations.

1991 ◽  
Vol 11 (12) ◽  
pp. 5945-5953
Author(s):  
J E Harper ◽  
J L Manley

Adenovirus E1A pre-mRNA was used as a model to examine alternative 5' splice site selection during in vitro splicing reactions. Strong preference for the downstream 13S 5' splice site over the upstream 12S or 9S 5' splice sites was observed. However, the 12S 5' splice site was used efficiently when a mutant pre-mRNA lacking the 13S 5' splice site was processed, and 12S splicing from this substrate was not reduced by 13S splicing from a separate pre-mRNA, demonstrating that 13S splicing reduced 12S 5' splice site selection through a bona fide cis-competition. DEAE-cellulose chromatography of nuclear extract yielded two fractions with different splicing activities. The bound fraction contained all components required for efficient splicing of simple substrates but was unable to utilize alternative 5' splice sites. In contrast, the flow-through fraction, which by itself was inactive, contained an activity required for alternative splicing and was shown to stimulate 12S and 9S splicing, while reducing 13S splicing, when added to reactions carried out by the bound fraction. Furthermore, the activity, which we have called distal splicing factor (DSF), enhanced utilization of an upstream 5' splice site on a simian virus 40 early pre-mRNA, suggesting that the factor acts in a position-dependent, substrate-independent fashion. Several lines of evidence are presented suggesting that DSF is a non-small nuclear ribonucleoprotein protein. Finally, we describe a functional interaction between DSF and ASF, a protein that enhances use of downstream 5' splice sites.


1998 ◽  
Vol 18 (1) ◽  
pp. 450-458 ◽  
Author(s):  
Volker Heinrichs ◽  
Lisa C. Ryner ◽  
Bruce S. Baker

ABSTRACT In Drosophila melanogaster, the fruitless(fru) gene controls essentially all aspects of male courtship behavior. It does this through sex-specific alternative splicing of the fru pre-mRNA, leading to the production of male-specific fru mRNAs capable of expressing male-specificfru proteins. Sex-specific fru splicing involves the choice between alternative 5′ splice sites, one used exclusively in males and the other used only in females. Here we report that the Drosophila sex determination genestransformer (tra) and transformer-2(tra-2) switch fru splicing from the male-specific pattern to the female-specific pattern through activation of the female-specific fru 5′ splice site. Activation of female-specific fru splicing requirescis-acting tra and tra-2 repeat elements that are part of an exonic splicing enhancer located immediately upstream of the female-specific fru 5′ splice site and are recognized by the TRA and TRA-2 proteins in vitro. Thisfru splicing enhancer is sufficient to promote the activation by tra and tra-2 of both a 5′ splice site and the female-specific doublesex (dsx) 3′ splice site, suggesting that the mechanisms of 5′ splice site activation and 3′ splice site activation may be similar.


2010 ◽  
Vol 30 (8) ◽  
pp. 1878-1886 ◽  
Author(s):  
Martin J. Hicks ◽  
William F. Mueller ◽  
Peter J. Shepard ◽  
Klemens J. Hertel

ABSTRACT Alternative 5′ splice site selection is one of the major pathways resulting in mRNA diversification. Regulation of this type of alternative splicing depends on the presence of regulatory elements that activate or repress the use of competing splice sites, usually leading to the preferential use of the proximal splice site. However, the mechanisms involved in proximal splice site selection and the thermodynamic advantage realized by proximal splice sites are not well understood. Here, we have carried out a systematic analysis of alternative 5′ splice site usage using in vitro splicing assays. We show that observed rates of splicing correlate well with their U1 snRNA base pairing potential. Weak U1 snRNA interactions with the 5′ splice site were significantly rescued by the proximity of the downstream exon, demonstrating that the intron definition mode of splice site recognition is highly efficient. In the context of competing splice sites, the proximity to the downstream 3′ splice site was more influential in dictating splice site selection than the actual 5′ splice site/U1 snRNA base pairing potential. Surprisingly, the kinetic analysis also demonstrated that an upstream competing 5′ splice site enhances the rate of proximal splicing. These results reveal the discovery of a new splicing regulatory element, an upstream 5′ splice site functioning as a splicing enhancer.


1993 ◽  
Vol 13 (5) ◽  
pp. 2677-2687 ◽  
Author(s):  
D A Sterner ◽  
S M Berget

Very small vertebrate exons are problematic for RNA splicing because of the proximity of their 3' and 5' splice sites. In this study, we investigated the recognition of a constitutive 7-nucleotide mini-exon from the troponin I gene that resides quite close to the adjacent upstream exon. The mini-exon failed to be included in spliced RNA when placed in a heterologous gene unless accompanied by the upstream exon. The requirement for the upstream exon disappeared when the mini-exon was internally expanded, suggesting that the splice sites bordering the mini-exon are compatible with those of other constitutive vertebrate exons and that the small size of the exon impaired inclusion. Mutation of the 5' splice site of the natural upstream exon did not result in either exon skipping or activation of a cryptic 5' splice site, the normal vertebrate phenotypes for such mutants. Instead, a spliced RNA accumulated that still contained the upstream intron. In vitro, the mini-exon failed to assemble into spliceosome complexes unless either internally expanded or accompanied by the upstream exon. Thus, impaired usage of the mini-exon in vivo was accompanied by impaired recognition in vitro, and recognition of the mini-exon was facilitated by the presence of the upstream exon in vivo and in vitro. Cumulatively, the atypical in vivo and in vitro properties of the troponin exons suggest a mechanism for the recognition of this mini-exon in which initial recognition of an exon-intron-exon unit is followed by subsequent recognition of the intron.


1988 ◽  
Vol 8 (6) ◽  
pp. 2610-2619 ◽  
Author(s):  
D E Lowery ◽  
B G Van Ness

The processing of a number of kappa-immunoglobulin primary mRNA (pre-mRNA) constructs has been examined both in vitro and in vivo. When a kappa-immunoglobulin pre-mRNA containing multiple J segment splice sites is processed in vitro, the splice sites are used with equal frequency. The presence of signal exon, S-V intron, or variable (V) region has no effect on splice site selection in vitro. Nuclear extracts prepared from a lymphoid cell line do not restore correct splice site selection. Splice site selection in vitro can be altered by changing the position or sequence of J splice donor sites. These results differ from the processing of similar pre-mRNAs expressed in vivo by transient transfection. The 5'-most J splice donor site was exclusively selected in vivo, even in nonlymphoid cells, and even in transcripts where in vitro splicing favored a 3' J splice site. The in vitro results are consistent with a model proposing that splice site selection is influenced by splice site strength and proximity; however, our in vivo results demonstrate a number of discrepancies with such a model and suggest that splice site selection may be coupled to transcription or a higher-order nuclear structure.


1990 ◽  
Vol 10 (1) ◽  
pp. 84-94 ◽  
Author(s):  
B L Robberson ◽  
G J Cote ◽  
S M Berget

Interactions at the 3' end of the intron initiate spliceosome assembly and splice site selection in vertebrate pre-mRNAs. Multiple factors, including U1 small nuclear ribonucleoproteins (snRNPs), are involved in initial recognition at the 3' end of the intron. Experiments were designed to test the possibility that U1 snRNP interaction at the 3' end of the intron during early assembly functions to recognize and define the downstream exon and its resident 5' splice site. Splicing precursor RNAs constructed to have elongated second exons lacking 5' splice sites were deficient in spliceosome assembly and splicing activity in vitro. Similar substrates including a 5' splice site at the end of exon 2 assembled and spliced normally as long as the second exon was less than 300 nucleotides long. U2 snRNPs were required for protection of the 5' splice site terminating exon 2, suggesting direct communication during early assembly between factors binding the 3' and 5' splice sites bordering an exon. We suggest that exons are recognized and defined as units during early assembly by binding of factors to the 3' end of the intron, followed by a search for a downstream 5' splice site. In this view, only the presence of both a 3' and a 5' splice site in the correct orientation and within 300 nucleotides of one another will stable exon complexes be formed. Concerted recognition of exons may help explain the 300-nucleotide-length maximum of vertebrate internal exons, the mechanism whereby the splicing machinery ignores cryptic sites within introns, the mechanism whereby exon skipping is normally avoided, and the phenotypes of 5' splice site mutations that inhibit splicing of neighboring introns.


1987 ◽  
Vol 7 (2) ◽  
pp. 698-707
Author(s):  
B Chabot ◽  
J A Steitz

We examined the ability of U1 small nuclear ribonucleoproteins (U1 snRNPs) to recognize mutant and cryptic 5' splice sites on beta-globin pre-mRNA substrates using an RNase T1 protection assay. When U1 snRNPs were prebound to anti-(U1)RNP antibodies, we detected binding to mutant but not to cryptic 5' splice sites on several substrates. By contrast, in a splicing extract at 0 degree C, neither the mutated nor cryptic 5' splice sites of a human beta-globin transcript were selected as protected fragments with the same antibodies. However, after incubation of the transcript in the extract to yield splicing intermediates, fragments that included a cryptic 5' splice site were detected. The results of our analyses suggest that U1 snRNPs are involved in recognizing cryptic 5' splice sites but that interactions with other splicing components are required to stabilize the association.


2007 ◽  
Vol 4 (2) ◽  
pp. 24-46 ◽  
Author(s):  
T. Shashi Rekha ◽  
Chanchal K Mitra

Summary We have carried out a comparative analysis of the sub-sequences of size six| ten at the (donor| acceptor) splice site regions of five different organisms. The frequency analysis of the unique sub-sequences at the donor and acceptor regions suggests that the distribution of their occurrence is approximately exponential. We have observed that the number of unique sub-sequences (occurring with different frequencies) at the donor region are less than at the acceptor, suggesting that the sub-sequences at the acceptor region are more variable. The sub-sequences with high percentage of occurrence (uniqueness) are considered to be highly involved in splicing. Our analysis suggests that sub-sequences of length ~6-8 nucleotides (nt) at the splice sites – with six bases in intron (including the two central, conserved dinucleotides) and two bases in exon are optimal for the efficient assembly and binding of the spliceosomal complex during the process of splicing. The score pattern obtained by the alignment of the nucleotides at the donor region with the acceptor and vice-versa also suggests that a single sub-sequence at the donor region have different degree of similarity with sub-sequences at the acceptor thus determining that the donor sub-sequences are more crucial in pairing with the corresponding acceptor sub-sequences during the process of splicing.


2001 ◽  
Vol 21 (6) ◽  
pp. 1942-1952 ◽  
Author(s):  
Rosemary C. Dietrich ◽  
Marian J. Peris ◽  
Andrew S. Seyboldt ◽  
Richard A. Padgett

ABSTRACT U12-dependent introns containing alterations of the 3′ splice site AC dinucleotide or alterations in the spacing between the branch site and the 3′ splice site were examined for their effects on splice site selection in vivo and in vitro. Using an intron with a 5′ splice site AU dinucleotide, any nucleotide could serve as the 3′-terminal nucleotide, although a C residue was most active, while a U residue was least active. The penultimate A residue, by contrast, was essential for 3′ splice site function. A branch site-to-3′ splice site spacing of less than 10 or more than 20 nucleotides strongly activated alternative 3′ splice sites. A strong preference for a spacing of about 12 nucleotides was observed. The combined in vivo and in vitro results suggest that the branch site is recognized in the absence of an active 3′ splice site but that formation of the prespliceosomal complex A requires an active 3′ splice site. Furthermore, the U12-type spliceosome appears to be unable to scan for a distal 3′ splice site.


2000 ◽  
Vol 20 (11) ◽  
pp. 3988-3995 ◽  
Author(s):  
Troy Carlo ◽  
Rebecca Sierra ◽  
Susan M. Berget

ABSTRACT Internal exon size in vertebrates occurs over a narrow size range. Experimentally, exons shorter than 50 nucleotides are poorly included in mRNA unless accompanied by strengthened splice sites or accessory sequences that act as splicing enhancers, suggesting steric interference between snRNPs and other splicing factors binding simultaneously to the 3′ and 5′ splice sites of microexons. Despite these problems, very small naturally occurring exons exist. Here we studied the factors and mechanism involved in recognizing a constitutively included six-nucleotide exon from the cardiac troponin T gene. Inclusion of this exon is dependent on an enhancer located downstream of the 5′ splice site. This enhancer contains six copies of the simple sequence GGGGCUG. The enhancer activates heterologous microexons and will work when located either upstream or downstream of the target exon, suggesting an ability to bind factors that bridge splicing units. A single copy of this sequence is sufficient for in vivo exon inclusion and is the binding site for the known bridging mammalian splicing factor 1 (SF1). The enhancer and its bound SF1 act to increase recognition of the upstream exon during exon definition, such that competition of in vitro reactions with RNAs containing the GGGGCUG repeated sequence depress splicing of the upstream intron, assembly of the spliceosome on the 3′ splice site of the exon, and cross-linking of SF1. These results suggest a model in which SF1 bridges the small exon during initial assembly, thereby effectively extending the domain of the exon.


Sign in / Sign up

Export Citation Format

Share Document