exonic splice
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 8)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
pp. jmedgenet-2021-108179
Author(s):  
Marie F. Smeland ◽  
Pascal Brouillard ◽  
Trine Prescott ◽  
Laurence M Boon ◽  
Bodil Hvingel ◽  
...  

BackgroundHydrops fetalis, a pathological fluid accumulation in two or more body compartments, is aetiologically heterogeneous. We investigated a consanguineous family with recurrent pregnancy loss due to severe early-onset non-immune hydrops fetalis.Methods and resultsWhole exome sequencing in four fetuses with hydrops fetalis revealed that they were homozygous for the angiopoietin-2 (ANGPT2) variant Chr8 (GRCh37/Hg19): 6385085T>C, NM_001147.2:c.557A>G. The substitution introduces a cryptic, exonic splice site predicted to result in loss of 10 nucleotides with subsequent shift in reading frame, leading to a premature stop codon. RNA analysis in the heterozygous parents demonstrated loss of detectable mutant allele, indicative of loss-of-function via nonsense-mediated mRNA decay. Serum ANGPT2 levels were reduced in the parents. In a pregnancy with a healthy, heterozygous child, transiently increased fetal nuchal translucency was noted.ConclusionPathogenic heterozygous ANGPT2 missense variants were recently shown to cause autosomal dominant primary lymphoedema. ANGPT2 is a ligand of the TIE1-TIE2 (tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 1 and 2) pathway. It is critical to the formation and remodelling of blood and lymphatic vessels and is involved in vessel maintenance. ANGPT2 knockout mice die from generalised lymphatic dysfunction. We show here that a homozygous pathogenic variant causes loss-of-function and results in severe early-onset hydrops fetalis. This is the first report of an autosomal recessive ANGPT2-related disorder in humans.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
David T. Glidden ◽  
Jeramiah L. Buerer ◽  
Camillo F. Saueressig ◽  
William G. Fairbrother

AbstractHigh-throughput splicing assays have demonstrated that many exonic variants can disrupt splicing; however, splice-disrupting variants distribute non-uniformly across genes. We propose the existence of exons that are particularly susceptible to splice-disrupting variants, which we refer to as hotspot exons. Hotspot exons are also more susceptible to splicing perturbation through drug treatment and knock-down of RNA-binding proteins. We develop a classifier for exonic splice-disrupting variants and use it to infer hotspot exons. We estimate that 1400 exons in the human genome are hotspots. Using panels of splicing reporters, we demonstrate how the ability of an exon to tolerate a mutation is inversely proportional to the strength of its neighboring splice sites.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Maki Igarashi ◽  
Yohei Masunaga ◽  
Yuichi Hasegawa ◽  
Kenichi Kinjo ◽  
Mami Miyado ◽  
...  

Abstract Although splicing errors due to single nucleotide variants represent a common cause of monogenic disorders, only a few variants have been shown to create new splice sites in exons. Here, we report an MAP3K1 splice variant identified in two siblings with 46,XY disorder of sex development. The patients carried a maternally derived c.2254C>T variant. The variant was initially recognized as a nonsense substitution leading to nonsense-mediated mRNA decay (p.Gln752Ter); however, RT-PCR for lymphoblastoid cell lines showed that this variant created a new splice donor site and caused 39 amino acid deletion (p.Gln752_Arg790del). All transcripts from the variant allele appeared to undergo altered splicing. The two patients exhibited undermasculinized genitalia with and without hypergonadotropism. Testosterone enanthate injections and dihydrotestosterone ointment applications yielded only slight increase in their penile length. Dihydrotestosterone-induced APOD transactivation was less significant in patients’ genital skin fibroblasts compared with that in control samples. This study provides an example of nonsense-associated altered splicing, in which a highly potent exonic splice site was created. Furthermore, our data, in conjunction with the previous data indicating the association between MAP3K1 and androgen receptor signaling, imply that the combination of testicular dysgenesis and androgen insensitivity may be a unique phenotype of MAP3K1 abnormalities.


Genes ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 903
Author(s):  
Beau Sylvester ◽  
Frederick Brindopke ◽  
Akiko Suzuki ◽  
Melissa Giron ◽  
Allyn Auslander ◽  
...  

Missense, nonsense, splice site and regulatory region variants in interferon regulatory factor 6 (IRF6) have been shown to contribute to both syndromic and non-syndromic forms of cleft lip and/or palate (CL/P). We report the diagnostic evaluation of a complex multigeneration family of Honduran ancestry with a pedigree structure consistent with autosomal-dominant inheritance with both incomplete penetrance and variable expressivity. The proband’s grandmother bore children with two partners and CL/P segregates on both sides of each lineage. Through whole-exome sequencing of five members of the family, we identified a single shared synonymous variant, located in the middle of exon 7 of IRF6 (p.Ser307Ser; g.209963979 G>A; c.921C>T). The variant was shown to segregate in the seven affected individuals and through three unaffected obligate carriers, spanning both sides of this pedigree. This variant is very rare, only being found in three (all of Latino ancestry) of 251,352 alleles in the gnomAD database. While the variant did not create a splice acceptor/donor site, in silico analysis predicted it to impact an exonic splice silencer element and the binding of major splice regulatory factors. In vitro splice assays supported this by revealing multiple abnormal splicing events, estimated to impact >60% of allelic transcripts. Sequencing of the alternate splice products demonstrated the unmasking of a cryptic splice site six nucleotides 5′ of the variant, as well as variable utilization of cryptic splice sites in intron 6. The ectopic expression of different splice regulatory proteins altered the proportion of abnormal splicing events seen in the splice assay, although the alteration was dependent on the splice factor. Importantly, each alternatively spliced mRNA is predicted to result in a frame shift and prematurely truncated IRF6 protein. This is the first study to identify a synonymous variant as a likely cause of NS-CL/P and highlights the care that should be taken by laboratories when considering and interpreting variants.


2020 ◽  
Author(s):  
Maya Hiltpold ◽  
Guanglin Niu ◽  
Naveen Kumar Kadri ◽  
Danang Crysnanto ◽  
Zih-Hua Fang ◽  
...  

AbstractCattle are ideally suited to investigate the genetics of male reproduction, because semen quality and fertility are recorded for all ejaculates of artificial insemination bulls. We analysed 26,090 ejaculates of 794 Brown Swiss bulls to assess ejaculate volume, sperm concentration, sperm motility, sperm head and tail anomalies and insemination success. The heritability of the six semen traits was between 0 and 0.26. Genome-wide association testing on 607,511 SNPs revealed a QTL on bovine chromosome 6 that was associated with sperm motility (P = 2.5 × 10−27), head (P = 2.0 × 10−44) and tail anomalies (P = 7.2 × 10−49) and insemination success (P = 9.9 × 10−13). The QTL harbors a recessive allele that compromises semen quality and male fertility. We replicated the effect of the QTL on fertility (P = 7.1 × 10−32) in an independent cohort of 2481 Brown Swiss bulls. The analysis of whole-genome sequencing data revealed that a synonymous variant (BTA6:58373887C>T, rs474302732) in WDR19 encoding WD repeat-containing protein 19 was in linkage disequilibrium with the fertility-associated haplotype. WD repeat-containing protein 19 is a constituent of the intraflagellar transport complex that is essential for the physiological function of motile cilia and flagella. Bioinformatic and transcription analyses revealed that the BTA6:58373887 T-allele activates a cryptic exonic splice site that eliminates three evolutionarily conserved amino acids from WDR19. Western blot analysis demonstrated that the BTA6:58373887 T-allele decreases protein expression. We make the remarkable observation that, in spite of negative effects on semen quality and bull fertility, the BTA6:58373887 T-allele has a frequency of 24 % in the Brown Swiss population. Our findings are the first to uncover a variant that is associated with quantitative variation in semen quality and male fertility in cattle.Author summaryIn cattle farming, artificial insemination is the most commonly used method of breeding. To ensure high fertilization rates, ejaculate quality and insemination success are closely monitored in artificial insemination bulls. We analyse semen quality, insemination success and microarray-called genotypes at more than 600,000 genome-wide SNP markers in 794 bulls to identify a recessive allele that compromises semen quality. We take advantage of whole-genome sequencing to pinpoint a variant in the coding sequence of WDR19 encoding WD repeat-containing protein 19 that activates a novel exonic splice site. Our results indicate that cryptic splicing in WDR19 is associated with reduced male reproductive performance. This is the first report of a variant that contributes to quantitative variation in bovine semen quality.


2020 ◽  
Vol 6 (1) ◽  
pp. e386 ◽  
Author(s):  
Renske I. Wadman ◽  
Marc D. Jansen ◽  
Chantall A.D. Curial ◽  
Ewout J.N. Groen ◽  
Marloes Stam ◽  
...  

ObjectiveTo investigate mutations in genes that are potential modifiers of spinal muscular atrophy (SMA) severity.MethodsWe performed a hypothesis-based search into the presence of variants in fused in sarcoma (FUS), transactive response DNA-binding protein 43 (TDP-43), plastin 3 (PLS3), and profilin 2 (PFN2) in a cohort of 153 patients with SMA types 1–4, including 19 families. Variants were detected with targeted next-generation sequencing and confirmed with Sanger sequencing. Functional effects of the identified variants were analyzed in silico and for PLS3, by analyzing expression levels in peripheral blood.ResultsWe identified 2 exonic variants in FUS exons 5 and 6 (p.R216C and p.S135N) in 2 unrelated patients, but clinical effects were not evident. We identified 8 intronic variants in PLS3 in 33 patients. Five PLS3 variants (c.1511+82T>C; c.748+130 G>A; c.367+182C>T; c.891-25T>C (rs145269469); c.1355+17A>G (rs150802596)) potentially alter exonic splice silencer or exonic splice enhancer sites. The variant c.367+182C>T, but not RNA expression levels, corresponded with a more severe phenotype in 1 family. However, this variant or level of PLS3 expression did not consistently correspond with a milder or more severe phenotype in other families or the overall cohort. We found 3 heterozygous, intronic variants in PFN2 and TDP-43 with no correlation with clinical phenotype or effects on splicing.ConclusionsPLS3 and FUS sequence variants do not modify SMA severity at the population level. Specific variants in individual patients or families do not consistently correlate with disease severity.


2019 ◽  
Vol 37 (4) ◽  
pp. 1148-1164
Author(s):  
Liam Abrahams ◽  
Laurence D Hurst

Abstract Although the constraints on a gene’s sequence are often assumed to reflect the functioning of that gene, here we propose transfer selection, a constraint operating on one class of genes transferred to another, mediated by shared binding factors. We show that such transfer can explain an otherwise paradoxical depletion of stop codons in long intergenic noncoding RNAs (lincRNAs). Serine/arginine-rich proteins direct the splicing machinery by binding exonic splice enhancers (ESEs) in immature mRNA. As coding exons cannot contain stop codons in one reading frame, stop codons should be rare within ESEs. We confirm that the stop codon density (SCD) in ESE motifs is low, even accounting for nucleotide biases. Given that serine/arginine-rich proteins binding ESEs also facilitate lincRNA splicing, a low SCD could transfer to lincRNAs. As predicted, multiexon lincRNA exons are depleted in stop codons, a result not explained by open reading frame (ORF) contamination. Consistent with transfer selection, stop codon depletion in lincRNAs is most acute in exonic regions with the highest ESE density, disappears when ESEs are masked, is consistent with stop codon usage skews in ESEs, and is diminished in both single-exon lincRNAs and introns. Owing to low SCD, the maximum lengths of pseudo-ORFs frequently exceed null expectations. This has implications for ORF annotation and the evolution of de novo protein-coding genes from lincRNAs. We conclude that not all constraints operating on genes need be explained by the functioning of the gene but may instead be transferred owing to shared binding factors.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Nicholas J. Norton ◽  
Hoi Ping Mok ◽  
Fatima Sharif ◽  
Jack C. Hirst ◽  
Andrew M. L. Lever

ABSTRACTTranscriptionally silent HIV proviruses form the major obstacle to eradicating HIV. Many studies of HIV latency have focused on the cellular mechanisms that maintain silencing of proviral DNA. Here we show that viral sequence variation affecting replicative ability leads to variable rates of silencing and ability to reactivate. We studied naturally occurring and engineered polymorphisms in a recently identified exonic splice enhancer (ESEtat) that regulatestatmRNA splicing and constructed viruses with increased (strain M1), reduced (strain M2), or completely absent (strain ERK) binding of splicing factors essential for optimal production oftatmRNA resulting in a corresponding change in Tat activity. The mutations affected viral replication, with M1 having wild-type (WT) kinetics, M2 exhibiting reduced kinetics, and ERK showing completely abrogated replication. Using single-round infection with green fluorescent protein (GFP)-expressing viruses to study proviral gene expression, we observed progressively greater rates of silencing relating to the degree of ESEtatdisruption, with the WT strain at 53%, strain M2 at 69%, and strain ERK at 94%. By stimulating infected cells with a latency reversal agent (phorbol myristate acetate [PMA], panobinostat, or JQ1), we observed that the dose required to achieve 50% of the maximum signal was lowest in the WT, intermediate in M2, and highest in ERK, indicating progressively higher thresholds for reactivation. These results suggest that the ability of silent proviruses to reactivate from latency is variable and that minor differences in the viral sequence can alter the proportion of silenced viruses as well as the threshold required to induce silenced viruses to reactivate and express.IMPORTANCEA reservoir of infected cells in which the HIV genome is transcriptionally silent is acknowledged to be the principal barrier to eradicating the virus from an infected person. A number of cellular processes are implicated in this silencing; however, the viral factors that may contribute remain underexplored. Here we examined mutations altering the correct splicing of HIV gene products as a model to study whether differences in viral sequence can affect either the proportion of viruses that are active or silent or their ability to reactivate. We found that some naturally occurring variations result in viruses that are silenced at a higher rate and require a proportionally increased stimulus for reactivation from latency. These data suggest that the silencing and reactivation behavior of HIV exists in a spectrum, influenced by factors intrinsic to the virus.


2018 ◽  
Vol 28 (10) ◽  
pp. 1442-1454 ◽  
Author(s):  
Rosina Savisaar ◽  
Laurence D. Hurst

Sign in / Sign up

Export Citation Format

Share Document