Hyperprolactinaemia attenuates the gonadotrophin releasing hormone receptor response to gonadectomy in rats

1982 ◽  
Vol 95 (2) ◽  
pp. 267-274 ◽  
Author(s):  
R. N. Clayton ◽  
L. C. Bailey

Measurement of pituitary gonadotrophin releasing hormone (Gn-RH) receptor content provides a qualitative index of prior exposure of the pituitary gland to endogenous Gn-RH. The effect of moderate hyperprolactinaemia (serum prolactin = 95–250 μg/l), achieved with three pituitary grafts beneath the renal capsule, on the pituitary Gn-RH receptor content and serum LH responses to gonadectomy of adult rats has been studied. In males the presence of hyperprolactinaemia for 7 days completely prevented the increase in Gn-RH receptor content 3 days after castration and inhibited the serum LH rise by 45%. By 6 days after castration, Gn-RH receptors had increased in the hyperprolactinaemic castrated animals but values were 33% lower than in sham-grafted controls, while the serum LH increase was attenuated by 30%. Pituitary LH content was also lower in grafted castrated animals 6 days after castration. Hyperprolactinaemia for 3 weeks had no effect on Gn-RH receptors or pituitary LH content of intact male rats, although basal serum LH was decreased by 50%. Hyperprolactinaemia also attenuated the increases in Gn-RH receptors, serum LH and pituitary LH which occurred 6 days after ovariectomy in female rats. In all experiments the pituitary content of prolactin was reduced by 80–90% in animals bearing pituitary grafts. These results suggest that hyperprolactinaemia restricts the Gn-RH receptor response to gonadectomy by decreasing endogenous hypothalamic Gn-RH secretion.

1989 ◽  
Vol 120 (2) ◽  
pp. 261-268 ◽  
Author(s):  
A. Kooy ◽  
R. F. A. Weber ◽  
M. P. Ooms ◽  
J. T. M. Vreeburg

ABSTRACT The effects of the transplantable purely prolactin-secreting tumour 7315b on serum gonadotrophins were studied in adult rats. Possible contributions of the adrenals to the tumour-induced inhibition of serum LH and FSH were evaluated. The suppressive actions of tumour 7315b on serum gonadotrophins in gonadectomized plus adrenalectomized male and female rats were compared. Within 4 weeks after inoculation of tumour 7315b in intact male rats very high levels of prolactin and decreased serum levels of gonadotrophins and testosterone were recorded. At autopsy reduced weights of testes and accessory sex organs and slightly increased adrenal weights were found. In addition, in animals treated with a small testosterone-filled capsule after castration, tumour 7315b reduced serum concentrations of LH and FSH. Adrenalectomy did not prevent this suppressive action of the tumour on the post-castration rise of serum gonadotrophins. Suppression of serum gonadotrophins during hyperprolactinaemia was greater in gonadectomized plus adrenalectomized female rats than in male rats, indicating that the degree of the tumour-induced suppression of LH and FSH after castration is determined to a large extent by the sex of the animal. The purely prolactin-secreting tumour 7315b has therefore been shown to be a suitable model for studying the effects of severe hyperprolactinaemia on the pituitary-gonadal axis in rats. Journal of Endocrinology (1989) 120, 261–268


1989 ◽  
Vol 123 (1) ◽  
pp. 83-91 ◽  
Author(s):  
K.-L. Kolho ◽  
I. Huhtaniemi

ABSTRACT The acute and long-term effects of pituitary-testis suppression with a gonadotrophin-releasing hormone (GnRH) agonist, d-Ser(But)6des-Gly10-GnRH N-ethylamide (buserelin; 0·02, 0·1, 1·0 or 10 mg/kg body weight per day s.c.) or antagonist, N-Ac-d-Nal(2)1,d-p-Cl-Phe2,d-Trp3,d-hArg(Et2)6,d-Ala10-GnRH (RS 68439; 2 mg/kg body weight per day s.c.) were studied in male rats treated on days 1–15 of life. The animals were killed on day 16 (acute effects) or as adults (130–160 days; long-term effects). Acutely, the lowest dose of the agonist decreased pituitary FSH content and testicular LH receptors, but with increasing doses pituitary and serum LH concentrations, intratesticular testosterone content and weights of testes were also suppressed (P< 0·05–0·01). No decrease was found in serum FSH or in weights of accessory sex organs even with the highest dose of the agonist, the latter finding indicating continuing secretion of androgens. The GnRH antagonist treatment suppressed pituitary LH and FSH contents and serum LH (P< 0·05–0·01) but, as with the agonist, serum FSH remained unaltered. Testicular testosterone and testis weights were decreased (P <0·01) but testicular LH receptors remained unchanged. Moreover, the seminal vesicle and ventral prostate weights were reduced, in contrast to the effects of the agonists. Pituitary LH and FSH contents had recovered in all adult rats treated neonatally with agonist and there was no effect on serum LH and testosterone concentrations or on fertility. In contrast, in adult rats treated neonatally with antagonist, weights of testis and accessory sex organs remained decreased (P <0·01–0·05) but hormone secretion from the pituitary and testis had returned to normal except that serum FSH was increased by 80% (P <0·01). Interestingly, 90% of the antagonist-treated animals were infertile. It is concluded that treatment with a GnRH agonist during the neonatal period does not have a chronic effect on pituitary-gonadal function. In contrast, GnRH antagonist treatment neonatally permanently inhibits the development of the testis and accessory sex organs and results in infertility. Interestingly, despite the decline of pituitary FSH neonatally, neither of the GnRH analogues was able to suppress serum FSH values and this differs from the concomitant changes in LH and from the effects of similar treatments in adult rats. Journal of Endocrinology (1989) 123, 83–91


1975 ◽  
Vol 67 (1) ◽  
pp. 71-79 ◽  
Author(s):  
P. DE MOOR ◽  
M. ADAM-HEYLEN ◽  
H. VAN BAELEN ◽  
G. VERHOEVEN

SUMMARY Adult rats of both sexes were either gonadectomized or hypophysectomized and gonadectomized. Three to eight weeks later they were treated for 14 consecutive days with oil or with 75 or 200 μg testosterone propionate (TP) per 100 g body weight. The animals were killed and for each sex the gonadectomized animals were compared with the hypophysectomized-gonadectomized animals as far as their NADPH- and NADH-dependent 3α-hydroxysteroid dehydrogenases (3α-HSD) in renal microsomes, transcortin levels in serum and five organ weights relative to total body weight were concerned. For two of the latter, i.e. the relative kidney and prostatic weights, no significant differences were found. Transcortin levels, relative adrenal weights and renal NADPH-dependent 3α-HSD activities were higher in oil-treated gonadectomized animals than in oil-treated hypophysectomized-gonadectomized animals. The opposite was found for the relative weights of uterus and seminal vesicles and renal NADH-dependent 3α-HSD activities. These differences between gonadectomized and hypophysectomized-gonadectomized animals disappeared after TP treatment as far as transcortin levels were concerned but remained for the five other parameters. After gonadectomy sexual differences subsisted for all parameters studied. But whereas intact male rats had higher NADH-dependent 3α-HSD activities than female rats the opposite was found after gonadectomy. After gonadectomy plus hypophysectomy the between sex differences disappeared as far as transcortin levels were concerned but remained in the other parameters studied.


1975 ◽  
Vol 67 (3) ◽  
pp. 425-430 ◽  
Author(s):  
R. P. DEIS ◽  
NIA ALONSO

SUMMARY The effect of synthetic thyrotrophin releasing factor (TRF) on serum prolactin and LH concentrations was determined by radioimmunoassay in male, cyclic and pseudopregnant female rats. A solution of TRF (0·1, 0·25, 0·5 and 1 μg/rat) was injected i.v. at 17.00 h into rats pretreated with sodium pentobarbitone at 13.00 h. A group of male rats was also treated with TRF at 11.00 h after pretreatment with sodium pentobarbitone at 07.00 h. Fifteen minutes after TRF administration, blood samples were obtained by heart puncture. Doses of 0·25, 0·5 and 1 μg TRF significantly increased the serum prolactin concentration in pro-oestrous rats. The mean serum prolactin level after the injection of 0·5 and 1 μg into oestrous rats and 0·5 μg TRF into dioestrous day 2 rats, was significantly greater than the control values. Injection of TRF on day 1 of dioestrus had no effect. Serum LH concentration was not significantly modified by the various doses of TRF administered. On day 3 of pseudopregnancy a significant increase of serum prolactin values was obtained with 0·5 and 1 μg TRF. On day 7 of pseudopregnancy a dose of 0·5 μg produced the same effect, but on day 10 of pseudopregnancy only 1 μg TRF significantly increased serum prolactin levels when compared with the control rats. In male rats serum prolactin concentration was significantly greater than the control values after TRF treatment either in the morning or the afternoon. The response was similar to that obtained in pro-oestrous rats. The results suggest that the ability of synthetic TRF to stimulate prolactin release exists in both female and male rats and that TRF does not affect LH secretion.


1980 ◽  
Vol 85 (2) ◽  
pp. 307-315 ◽  
Author(s):  
M. S. BLANK ◽  
A. E. PANERAI ◽  
H. G. FRIESEN

The effects of subcutaneous injections of the opiate antagonist naloxone on the tonic and phasic secretion of prolactin and LH were studied in rats. During development, resting levels of prolactin in serum were decreased by naloxone (2·5 mg/kg body wt) on days 24,45 and 50 in female rats and on days 28,45 and 50 in male rats. In the adult, naloxone (2·5 mg/kg body wt) decreased basal levels of serum prolactin in male rats and levels during oestrus in female rats. In 25-day-old female rats, serum LH rose from resting levels within 7·5 min of naloxone administration (2·5 mg/kg body wt) and returned to pretreatment levels by 30 min, while prolactin fell by 7·5 min and remained low for as long as 60 min after treatment. Furthermore, a tenfold lower dose of naloxone (0·25 mg/kg body wt) did not raise basal levels of serum LH but still decreased resting levels of serum prolactin in immature female rats (24 days old). The effect of naloxone (2·5 mg/kg body wt) on phasic LH release was studied in 29-day-old immature female rats primed on day 27 with pregnant mare serum gonadotrophin (PMSG). In these PMSG-treated rats the onset of the prolactin surge was blunted by naloxone while it had no effect on phasic LH release. Naloxone (5 mg/kg body wt) also induced a rise in levels of serum LH in ovariectomized rats and, if administered with morphine, it reversed the short-term inhibition of LH secretion caused by morphine. However, naloxone was ineffective after pretreatment with oestradiol benzoate. These findings suggest that the responses of serum LH and prolactin to naloxone were dissociated and that oestrogens and opiate peptides may have interacted to regulate secretion of LH.


1969 ◽  
Vol 40 (3) ◽  
pp. 734-746 ◽  
Author(s):  
Donald Svoboda ◽  
Daniel Azarnoff ◽  
Janardan Reddy

The liver cells of intact male rats given ethyl-α-p-chlorophenoxyisobutyrate (CPIB) characteristically show a marked increase in microbodies and in catalase activity, while those of intact female rats do not. In castrated males given estradiol benzoate and CPIB the increase in catalase activity and microbody proliferation is abolished, while in castrated females given testosterone propionate and CPIB the livers show a marked increase in microbodies and in catalase activity. No sex difference in microbody and catalase response is apparent in fetal and neonatal rats. Both sexes show a sharp rise in catalase activity on the day of birth, with a rapid decline at 5 days after birth. Thyroidectomy abolishes the hypolipidemic effect of CPIB in rats, but microbody proliferation and increase in catalase activity persists in thyroidectomized male rats, indicating that microbody proliferation can be independent of hypolipidemia. Adrenalectomy does not alter appreciably the microbody-catalase response to CPIB. These experiments demonstrate that (1) in adult rats, hepatic microbody proliferation is dependent to a significant degree upon male sex hormone but is largely independent of thyroid or adrenal gland hormones; (2) hepatic microbody proliferation is independent of the hypolipidemic effect of CPIB; (3) displacement of thyroxine from serum protein may not be sufficient cause for stimulation of microbody formation.


1980 ◽  
Vol 86 (1) ◽  
pp. 79-92 ◽  
Author(s):  
W. P. HERMANS ◽  
E. C. M. VAN LEEUWEN ◽  
M. H. M. DEBETS ◽  
F. H. DE JONG

Administration of steroid-free bovine follicular fluid (bFF), containing inhibin-like activity, depressed levels of FSH measured 4 h after injection in intact adult and 35-day-old female rats, but not in younger females. Suppression of FSH was also observed in intact male rats, aged 55 days, but not in older and younger male rats. Eight hours after injection of bFF, FSH levels were depressed in 15-day-old and older immature and adult rats of both sexes. Male and female rats, gonadectomized 2 days earlier, responded similarly to bFF treatment as did the intact animals. In a second experiment it was found that the rise of FSH levels, occurring within 8 h of gonadectomy, decreased with age in male and increased with age in female rats. Steroid treatment was found to prevent the rise in FSH levels partially in 15-day-old male and completely in 25-day-old female rats, whereas treatment with bFF was fully effective in blocking the FSH rise in both immature and adult rats of both sexes. It is concluded that inhibin might be a major physiological factor in a fast-acting control of FSH concentrations from at least the age of 25 days onwards in female rats. In male rats its physiological significance might be limited to the prepubertal period, despite the fact that pituitary secretion of FSH is suppressed by exogenous inhibin-like activity at all ages studied.


1988 ◽  
Vol 116 (2) ◽  
pp. 241-246 ◽  
Author(s):  
K.-L. Kolho ◽  
H. Nikula ◽  
I. Huhtaniemi

ABSTRACT Postnatal secretion of gonadotrophin by male rats was inhibited by a potent gonadotrophin-releasing hormone (GnRH) antagonist analogue (N-Ac-4-Cl-d-Phe1,4-Cl-d-Phe2,d-Trp3,d-Phe6,des-Gly10-GnRH-d-alanylamide; Org 30039; 2 mg/kg s.c. twice daily) on days 1–5, 6–10, 11–15 or 16–20 of life. The onset of puberty was determined by monitoring the separation of the preputium from the glans penis, i.e. balanopreputial separation (BPS). Rats treated on days 1–5 matured normally, whereas all treatments between days 6 and 20 delayed BPS (P < 0·01). In adult rats (between 110 and 160 days of age), testis weights were reduced by 21–35% (P < 0·01) in groups treated between days 1 and 15, although weights of the accessory sex glands were normal. Testicular FSH receptors were decreased by 31–47% (P < 0·01) in all treatment groups, whereas the LH receptor content was decreased only in rats treated between days 1 and 5 (18%; P < 0·05) and prolactin receptor content decreased only in rats treated up to day 10 (31–33%; P < 0·01). Concentrations of serum testosterone, LH and FSH, and pituitary contents of LH and FSH were unaffected by neonatal treatment with Org 30039. Animals treated with Org 30039 had reduced fertility which was most pronounced (88%; P < 0·01) in rats treated between days 1 and 5. However, motile sperm were detectable in the cauda epididymis of the infertile rats. In conclusion, postnatal gonadotrophin deprivation induced with a GnRH antagonist for different 5-day periods during the first 15 days of life delayed puberty, reduced adult testis weight and impaired fertility. Some effects of the antagonist were largely independent of the timing of gonadotrophin suppression. Other effects, including suppression of testicular LH and prolactin receptors and the delay in the onset of puberty, were found only in the younger and older treatment groups respectively. These findings emphasize the importance of neonatal hypothalamic-pituitary-gonadal function for subsequent sexual maturation. J. Endocr. (1988) 116, 241–246


1989 ◽  
Vol 122 (2) ◽  
pp. 519-526 ◽  
Author(s):  
K.-L. Kolho ◽  
I. Huhtaniemi

ABSTRACT Suppression of neonatal rat pituitary-testis function by gonadotrophin-releasing hormone (GnRH) antagonists results in delayed sexual maturation and infertility. Since the mechanism is not understood, the acute effects of a GnRH antagonist on gonadotrophin secretion in neonatal male rats has been studied in more detail. Treatment with a GnRH antagonist analogue, N-Ac-d-Nal(2)1,d-p-Cl-Phe2,d-Trp3,d-hArg(ET2)6,d-Ala10-GnRH (2 mg/kg per day) on days 1–10 of life had prolonged effects on gonadotrophin secretion; serum LH and FSH recovered in 1 week, but the pituitary content took 2 weeks to recover. Likewise, LH and FSH responses to acute in-vivo stimulation with a GnRH agonist were still suppressed 1 week after the treatment. Interestingly, a rebound (86% increase) in basal serum FSH was found 16 days after treatment with the antagonist. Whether testis factors influence gonadotrophin secretion during treatment with the GnRH antagonist and/or in the subsequent recovery period was also assessed. Neonatal rats were castrated on days 1, 5 or 10 of the 10-day period of antagonist treatment. Orchidectomy on days 1 and 5 only marginally affected gonadotrophin secretion. When orchidectomy was performed at the beginning of the recovery period, no effects on pituitary recovery were seen within 1 week of castration. After 16 days, serum LH and FSH in the antagonist-treated and control castrated rats were equally increased but the pituitary contents of the antagonist-treated rats were still suppressed. Finally, the effect of testosterone treatment on the recovery of gonadotrophin secretion after antagonist suppression was studied in intact and orchidectomized animals. The rats were implanted with testosterone capsules for 7 days after treatment with the GnRH antagonist in the neonatal period. Testosterone suppressed pituitary LH contents similarly in all groups of animals, but had no effects on serum LH. Paradoxically, serum FSH was suppressed 50% by testosterone in intact and castrated antagonist-treated rats and in castrated controls but not in intact controls. These findings suggest that suppression of FSH by testosterone is only seen in neonatal animals with low endogenous levels of this androgen, whether due to GnRH antagonist treatment or castration. It is concluded that neonatal treatment with a GnRH antagonist results in prolonged suppression of LH and FSH secretion, that testis factors play only a minor role in pituitary modulation during the antagonist suppression and that more disturbances are observed in the post-treatment recovery of FSH secretion than in that of LH. Journal of Endocrinology (1989) 122, 519–526


1985 ◽  
Vol 105 (2) ◽  
pp. 211-218 ◽  
Author(s):  
B. A. Keel ◽  
T. O. Abney

ABSTRACT The influence of age on the sensitivity of the testis to oestrogens was investigated. Intact male rats at 10, 25, 40 and 53 days of age were injected s.c. with vehicle, 5 or 50 μg oestradiol or diethylstilboestrol (DES)/100 g body wt twice daily for 2 days; the animals were killed 12 h after the last injection. Subsequently, the concentrations of testicular androgens and serum LH, prolactin, testosterone and androstanediol (5α-androstane-3α, 17β-diol) were measured. Testicular androgen production was determined in vitro in the presence or absence of human chorionic gonadotrophin (hCG) or dibutyryl cyclic AMP (dbcAMP). Androgens in the serum and testes displayed an age-related alternating pattern with androstanediol being the major androgen produced at 27 days of age. As a result of oestrogen treatment, serum LH concentrations were decreased while serum prolactin was increased. Serum testosterone was decreased by 36–55% in the 12-day-old group and further reduced by 95% of control values by day 55; serum androstanediol was less sensitive to oestrogen suppression. Testicular concentrations of both testosterone and androstanediol exhibited a marked reduction in 12-day-old animals as a result of oestrogen administration. These values were reduced by 85–95% at day 27 and remained suppressed even at 55 days. Basal production of testosterone was unaffected by oestrogen treatment in 12- and 27-day-old animals but was markedly decreased by day 42. Significant suppression of basal production of androstanediol was observed as early as day 12. Oestradiol treatment caused a significant reduction in hCG responsiveness of both androgens at days 12, 42 and 55. Oestrogen administration resulted in a significant (32–59%) decline in dbcAMP-responsive testosterone production in the 42-day group and a further suppression in the 55-day group. A marked inhibition of dbcAMP-stimulated androstanediol production was also observed in the 42- and 55-day groups. Testosterone production in response to dbcAMP was not significantly altered in the 12- and 27-day groups. With few exceptions the effects of oestradiol and DES on testicular function were similar. The data presented here suggest that the inhibitory effects of oestrogens become more pronounced as the animal approaches adulthood, that oestradiol and DES are similarly effective in regulating testicular function at all ages studied and that the production of both testosterone and androstanediol are suppressed by oestrogen administration. J. Endocr. (1985) 105, 211–218


Sign in / Sign up

Export Citation Format

Share Document