Regulation of the corpus luteum of early pregnancy in the marmoset monkey: local interactions of luteotrophic and luteolytic hormones in vivo and their effects on the secretion of progesterone

1987 ◽  
Vol 114 (2) ◽  
pp. 231-239 ◽  
Author(s):  
J. P. Hearn ◽  
G. E. Webley

ABSTRACT The interaction between luteotrophic and luteolytic agents in controlling progesterone production by the marmoset corpus luteum in the late luteal phase/early pregnancy was investigated at the local level in vivo using a perfusion cannula system. Perfusion of the prostaglandin F2α(PGF2α) analogue, cloprostenol (0·5 μg/ml), resulted in an immediate fall in progesterone production. This response was not sustained in two out of five corpora lutea but pregnancy was terminated in all animals exposed to PGF2α. Perfusion of human chorionic gonadotrophin (hCG) (4 μg/ml) alone significantly stimulated progesterone secretion but there was no response to hCG when the corpus luteum had previously been perfused with PGF2α. Perfusion with hCG together with PGF2α prevented a fall in progesterone secretion. The results suggest that the luteolytic action of PGF2α in the marmoset may be to prevent luteotrophic support of the corpus luteum. Melatonin (860 pmol/l), perfused either with PGF2α or after PGF2α, stimulated progesterone production. The ability of melatonin to influence progesterone production by the primate corpus luteum may therefore be by both a direct luteotrophic action and the prevention of luteolysis. Application of the perfusion system in order to investigate the ability of deglycosylated hCG to antagonize the action of hCG at the corpus luteum showed the necessity of testing pure preparations of hormones. J. Endocr. (1987) 114, 231–239

1992 ◽  
Vol 4 (1) ◽  
pp. 77 ◽  
Author(s):  
JM Wallace ◽  
CJ Ashworth ◽  
RP Aitken ◽  
MA Cheyne

Induction of ovulation post partum is associated with a high incidence of prematurely regressing corpora lutea. However, inadequate luteal function is not the sole reason for pregnancy failure, because ewes with normal corpus luteum function and successful fertilization also fail to establish pregnancies. The effects of suckling status and the interval from post partum to rebreeding on corpus luteum and endometrial function were examined in vivo and in vitro. Ewes were weaned early or allowed to lactate, induced to ovulate using a progesterone-impregnated controlled internal drug release device and an intramuscular injection of pregnant mare serum gonadotrophin, and inseminated (intrauterine) at either 21 or 35 days post partum (n = 10 per group). A further 10 standard ewes whose interval from parturition was in excess of 150 days were included for comparative purposes. On Day 10 after insemination the pregnancy rate was determined in four ewes from each of the post-partum groups and five standard ewes. These ewes were then ovariectomized and hysterectomized for studies in vitro. The incidence of premature luteal regression, as assessed by progesterone concentrations in peripheral blood was independent of the suckling stimulus but dependent on stage post partum (21 days post partum, 6 of 19 ewes; 35 days post partum, 0 of 19 ewes; P less than 0.05). Luteal function was normal in all standard ewes. Ovulation rate, corpus luteum weight, corpus luteum progesterone content and basal progesterone production in vitro were significantly less in 21-day than in 35-day post-partum ewes. Pregnancy rates as determined on Day 10 or at term were low in all post-partum groups (7 out of the 38 ewes inseminated) compared with standard ewes (8 of 10). Uterine function was assessed by culturing endometrial tissue from the tip and body of each uterine horn in the presence of [3H]leucine for 30 h at 37 degrees C. Incorporation of radiolabel into non-dialysable proteins synthesized and secreted by the endometrium in vitro was independent of uterine horn location and suckling status but was significantly lower (P less than 0.001) in media from 21-day than from 35-day post-partum ewes. Irrespective of treatment group, incorporation of radiolabel was positively correlated with mean plasma progesterone concentrations on Days 2-10 after insemination and with basal progesterone production in vitro. Secreted proteins were detected by two-dimensional-polyacrylamide-gel electrophoresis and fluorography.(ABSTRACT TRUNCATED AT 400 WORDS)


1976 ◽  
Vol 70 (1) ◽  
pp. 39-45 ◽  
Author(s):  
F. R. BLATCHLEY ◽  
B. T. DONOVAN

SUMMARY The response of the guinea-pig corpus luteum to the luteolytic influence of glass beads placed in the uterus, or to prostaglandin administration, was followed by assay of the progesterone content of blood samples collected daily. Following the introduction of glass beads into the uterus early in the cycle, the secretion of progesterone was curtailed. Treatment with prostaglandin F2α over days 4–6 or 6–8 of the cycle temporarily depressed progesterone release without shortening the life of the corpora lutea. When the drug was administered over days 8–10, 10–12 or 12–14 the depression in progesterone was not followed by any recovery. These observations indicate that the response of the corpora lutea to a luteolytic influence changes during the oestrous cycle.


1977 ◽  
Vol 73 (1) ◽  
pp. 115-122 ◽  
Author(s):  
I. A. SWANSTON ◽  
K. P. McNATTY ◽  
D. T. BAIRD

SUMMARY The concentration of prostaglandin F2α (PGF2α), progesterone, pregnenolone, oestradiol-17β, oestrone, androstenedione and testosterone was measured in corpora lutea obtained from 40 women at various stages of the menstrual cycle. The concentration of PGF2α was significantly higher in corpora lutea immediately after ovulation (26·7 ± 3·9 (s.e.m.) ng/g, P < 0·005) and in corpora albicantia (16·3 ± 3·3 ng/g, P < 0·005) than at any other time during the luteal phase. There was no correlation between the concentration of PGF2α and that of any steroid. The progesterone concentration was highest in corpora lutea just after ovulation (24·9 ± 6·7 μg/g) and in early luteal groups (25·7 ± 6·8 μg/g) but declined significantly (P < 0·05) to its lowest level in corpora albicantia (1·82 ± 0·66 μg/g). The concentration of oestradiol-17β in the corpus luteum and luteal weight were significantly greater during the mid-luteal phase than at any other stage (concentration 282 ± 43 ng/g, P < 0·05; weight 1·86 ± 0·18 g, P < 0·005). The results indicate that regression of the human corpus luteum is not caused by a rise in the ovarian concentration of PGF2α in the late luteal phase of the cycle.


1992 ◽  
Vol 132 (1) ◽  
pp. 115-122 ◽  
Author(s):  
J. E. Sánchez-Criado ◽  
J. Th. J. Uilenbroek ◽  
B. Karels

ABSTRACT Administration of the antiprogesterone RU486 (2 mg/day) for 14 days to rats with a 5-day reproductive cycle resulted in an increase in both ovarian and pituitary weight in contrast with rats with a 4-day oestrous cycle. Luteal progesterone production decreased earlier in 4-day than in 5-day cyclic rats. Treatment of 5-day cyclic rats with antiprogesterone from the day of metoestrus onwards resulted in the advancement of the preovulatory prolactin surge by 24 h. Progesterone production by the corpus luteum was, however, not affected, indicating that in 5-day cyclic rats the corpora lutea are still functionally active at the time of the preovulatory surge of prolactin. They become, therefore, stimulated both in size and progesterone production. In contrast, the corpora lutea in 4-day cyclic rats are functionally inactive at the time of the preovulatory surge of prolactin, and prolactin acts luteolytically. In conclusion, the advancement of the preovulatory surge of prolactin by 24 h accounts, at least in part, for the increase in ovarian weight in 5-day cyclic rats after treatment with antiprogesterone. The results of these experiments do not agree with a direct effect of the antiprogesterone RU486 on progesterone secretion by the corpus luteum. Journal of Endocrinology (1992) 132, 115–122


1977 ◽  
Vol 72 (3) ◽  
pp. 379-383 ◽  
Author(s):  
K. M. HENDERSON ◽  
R. J. SCARAMUZZI ◽  
D. T. BAIRD

SUMMARY Corpora lutea of ewes bearing ovarian autotransplants were infused for 4 h with prostaglandin F2α (PGF2α) (10 μg/h), PGF2α + PGE2 (10 μg/h of each), PGE2 (10 μg/h) or saline on day 10 of the cycle. Ovarian venous blood obtained before, during, and up to 12 h after the infusion period, was assayed for progesterone. Prostaglandin F2α produced an immediate, rapid and sustained decline in progesterone secretion, but infusion of PGE2 together with PGF2α prevented the decline until after the infusion. Progesterone secretion was unaffected by infusion of PGE2 alone. Oestrous behaviour was observed in four out of seven animals infused with PGF2α but in only one out of six infused with PGF2α + PGE2. None of the animals infused with PGE2 alone or saline only came into heat.


1987 ◽  
Vol 112 (3) ◽  
pp. 449-457 ◽  
Author(s):  
G. E. Webley ◽  
J. P. Hearn

ABSTRACT The effect of human chorionic gonadotrophin (hCG) and melatonin on the local production of progesterone by the marmoset corpus luteum was investigated in vivo using a perfusion cannula system. Progesterone secretion was measured in 10-min fractions of buffer which had been perfused through the corpus luteum at a flow rate of 70 μl/min for a maximum of 3 h in anaesthetized animals. Two corpora lutea were cannulated in each animal; one for perfusion of test material and the other for perfusion with buffer alone as a control. Perfusion with hCG (25 i.u./ml), investigated as a positive control, produced a marked stimulation of progesterone secretion which increased 10–20 min from the start of perfusion and reached a peak after 30–60 min. A stimulation of progesterone was also observed after perfusion with melatonin (860 pmol/l). The response was evident within 10–30 min of the hormone reaching the corpus luteum and was similar in magnitude to that observed for hCG. The ability of melatonin to stimulate progesterone secretion supports previous in-vitro studies and suggests an ovarian action for melatonin in the primate. The local perfusion system described may have potential uses in studies of luteal function related to aspects of infertility or regulation of fertility. J. Endocr. (1987) 112, 449–457


1985 ◽  
Vol 104 (2) ◽  
pp. 241-250 ◽  
Author(s):  
B. Kalison ◽  
M. L. Warshaw ◽  
G. Gibori

ABSTRACT To determine whether prolactin affects both luteal and follicular production of testosterone and oestradiol, pseudopregnant rats, either intact or hypophysectomized on day 8, were injected daily between days 8 and 9 with 1·5 i.u. human chorionic gonadotrophin (hCG), 250 μg prolactin or a combination of both. Control rats were given vehicle. On day 9, blood was obtained from the ovarian vein and corpora lutea and follicles were isolated and incubated in vitro for 2 h. Administration of hCG to intact rats increased ovarian secretion of testosterone and oestradiol dramatically, but did not affect progesterone secretion. Hypophysectomy on day 8 of pseudopregnancy was followed by a drop in ovarian steroid secretion. Prolactin treatment of hypophysectomized rats markedly enhanced progesterone production but had no stimulatory effect on either testosterone or oestradiol. In contrast, hCG dramatically enhanced ovarian secretion of both testosterone and oestradiol without affecting progesterone secretion. Prolactin administered together with hCG antagonized the stimulation of both testosterone and oestradiol secretion by hCG, yet increased progesterone production. When the specific effects of hCG and prolactin administration on follicles and corpora lutea were studied separately, it was found that hCG treatment in vivo greatly stimulated testosterone and oestradiol production by both tissues in vitro. Since hCG only marginally affected aromatase activity in the follicle, had no effect on aromatase activity in luteal cells and did not increase progesterone synthesis, it appears that hCG acts to increase the formation of androgen substrate for oestradiol biosynthesis. Prolactin, administered with or without hCG, inhibited both basal and hCG-stimulated testosterone and oestradiol synthesis by the follicle. In sharp contrast to its inhibitory effect on follicular production of steroids, prolactin appears to be essential for LH stimulation of testosterone and oestradiol by the corpus luteum. In the absence of prolactin, luteal cells gradually ceased to respond to LH and decreased their output of testosterone and oestradiol. Prolactin administration to hypophysectomized rats did not affect luteal cell production of either steroid. However, corpora lutea of rats treated with prolactin responded to the hCG challenge with an increase in testosterone and oestradiol synthesis. In summary, results of this investigation demonstrate that prolactin affects follicular and luteal production of testosterone and oestradiol in opposite ways. It acts on the follicle to inhibit both basal and LH-stimulated production of testosterone and oestradiol, yet it markedly enhances LH stimulation of testosterone and oestradiol synthesis by luteal cells. J. Endocr. (1985) 104, 241–250


1980 ◽  
Vol 87 (2) ◽  
pp. 247-254 ◽  
Author(s):  
M. C. RICHARDSON ◽  
G. M. MASSON

Progesterone production was assessed following short-term incubations of luteal cell suspensions prepared from tissue samples of human corpora lutea obtained at specific times throughout the luteal phase of the menstrual cycle. Luteal cells responded rapidly and sensitively to human chorionic gonadotrophin (HCG; concentration required for 50% maximum response, 0·1–1·0 i.u./ml) with a maximum level of response (five- to tenfold higher than basal production) similar to that elicited by human LH or N6,02-dibutyryl cyclic AMP. In the absence of gonadotrophin or in the presence of sub-maximal (but not maximal) concentrations of HCG, progesterone production by mid-luteal phase cells was stimulated by prostaglandin F2α (1 μmol/l), an effect not observed during the late-luteal phase. l-Adrenaline and l-isoprenaline failed to elicit significant increases in the level of progesterone production.


1981 ◽  
Vol 91 (2) ◽  
pp. 197-203 ◽  
Author(s):  
M. C. RICHARDSON ◽  
G. M. MASSON

Cell suspensions were prepared from tissue samples of human corpora lutea obtained during the mid- and late-luteal phase of the menstrual cycle. Both oestradiol and progesterone production by dispersed cells were stimulated by similar concentrations of human chorionic gonadotrophin (hCG). As the degree of stimulation of production by hCG was greater for progesterone than for oestradiol (five- to tenfold compared with two- to threefold higher than basal production), the ratio of progesterone to oestradiol produced varied according to the level of trophic stimulation. A comparison of cell suspensions prepared from mid- and late-luteal phase corpora lutea, exposed to the same concentration of hCG (10 i.u./ml) in vitro, did not reveal a shift to oestradiol production in the late-luteal phase. Provision of additional testosterone during incubation raised the level of oestradiol production by dispersed luteal cells. At an optimum concentration of testosterone (1 μmol/l), oestradiol synthesis was not raised further in the presence of hCG or N6, O2-dibutyryl cyclic AMP, suggesting a lack of induction or activation of the aromatase system by gonadotrophin in short-term cultures. Basal and stimulated levels of progesterone production were not significantly impaired in the presence of testosterone.


Sign in / Sign up

Export Citation Format

Share Document