Different effects of the antiprogesterone RU486 on progesterone secretion by the corpus luteum of rats with 4- and 5-day oestrous cycles

1992 ◽  
Vol 132 (1) ◽  
pp. 115-122 ◽  
Author(s):  
J. E. Sánchez-Criado ◽  
J. Th. J. Uilenbroek ◽  
B. Karels

ABSTRACT Administration of the antiprogesterone RU486 (2 mg/day) for 14 days to rats with a 5-day reproductive cycle resulted in an increase in both ovarian and pituitary weight in contrast with rats with a 4-day oestrous cycle. Luteal progesterone production decreased earlier in 4-day than in 5-day cyclic rats. Treatment of 5-day cyclic rats with antiprogesterone from the day of metoestrus onwards resulted in the advancement of the preovulatory prolactin surge by 24 h. Progesterone production by the corpus luteum was, however, not affected, indicating that in 5-day cyclic rats the corpora lutea are still functionally active at the time of the preovulatory surge of prolactin. They become, therefore, stimulated both in size and progesterone production. In contrast, the corpora lutea in 4-day cyclic rats are functionally inactive at the time of the preovulatory surge of prolactin, and prolactin acts luteolytically. In conclusion, the advancement of the preovulatory surge of prolactin by 24 h accounts, at least in part, for the increase in ovarian weight in 5-day cyclic rats after treatment with antiprogesterone. The results of these experiments do not agree with a direct effect of the antiprogesterone RU486 on progesterone secretion by the corpus luteum. Journal of Endocrinology (1992) 132, 115–122

1976 ◽  
Vol 70 (1) ◽  
pp. 39-45 ◽  
Author(s):  
F. R. BLATCHLEY ◽  
B. T. DONOVAN

SUMMARY The response of the guinea-pig corpus luteum to the luteolytic influence of glass beads placed in the uterus, or to prostaglandin administration, was followed by assay of the progesterone content of blood samples collected daily. Following the introduction of glass beads into the uterus early in the cycle, the secretion of progesterone was curtailed. Treatment with prostaglandin F2α over days 4–6 or 6–8 of the cycle temporarily depressed progesterone release without shortening the life of the corpora lutea. When the drug was administered over days 8–10, 10–12 or 12–14 the depression in progesterone was not followed by any recovery. These observations indicate that the response of the corpora lutea to a luteolytic influence changes during the oestrous cycle.


1966 ◽  
Vol 52 (1) ◽  
pp. 72-90 ◽  
Author(s):  
R. Denamur ◽  
J. Martinet ◽  
R. V. Short

ABSTRACT The purpose of these experiments was to investigate the part played by the pituitary gland and the uterus in the control of the corpus luteum in the sheep. Six experiments were carried out, as follows: Hypophysectomy early and late in the oestrous cycle. Hypophysectomy on days 2–5 allowed the corpus luteum to continue secreting normal amounts of progesterone for up to 9 days, but thereafter the secretion declined. Hypophysectomy on days 9–10 caused the progesterone secretion to fall within 4 days. Thus it seems that the corpus luteum has a limited functional life span, and it normally requires the presence of a pituitary luteotrophin during the second half of the oestrous cycle if it is to secrete normally for 15 days. Pituitary stalk section early and late in the oestrous cycle. Regardless of the time of stalk section, the corpus luteum behaves as it would during a normal cycle. Thus pituitary stalk section does not produce the same effect as hypophysectomy, and seems to allow the severed pituitary gland to continue secreting luteotrophin. Hypophysectomy and hysterectomy carried out simultaneously early in the cycle. The results were similar to those in 1, progesterone secretion having declined significantly by days 12–15. This confirms that the declining secretory activity is due to a deficiency of pituitary luteotrophin, and not to any uterine luteolytic effect in this experiment. Pituitary stalk section and hysterectomy carried out simultaneously early in the cycle. In striking contrast to 3, some corpora lutea were still secreting progesterone normally on day 18. This shows once again that the isolated pituitary gland can continue to secrete luteotrophin. The different responses in this experiment and 2 emphasise the fact that the uterine luteolytic effect is normally dominant to the pituitary luteotrophic stimulus. Thus it would be impossible to demonstrate luteotrophic activity if the uterus were still present. Hysterectomy carried out at mid cycle, followed by hypophysectomy 20–30 days later. Whilst hysterectomy alone prolongs the secretory activity of the corpus luteum, subsequent hypophysectomy results in a rapid decline in progesterone secretion, commencing 48 hours after the operation. Thus the corpora lutea prolonged by hysterectomy, unlike those of the normal cycle, require daily pituitary luteotrophin secretion for their continued existence. Hysterectomy carried out at mid cycle, followed by pituitary stalk section 20–30 days later. Unlike 5, stalk section allows the corpora lutea to continue to secrete progesterone in large amounts for at least 15 days after the operation. This experiment, together with 2 and 4, once again emphasises that the stalk-sectioned pituitary gland can continue to secrete luteotrophin, at least for a time. These experiments therefore support the view that the cyclical corpus luteum of the sheep is under a dual control. There is a pituitary luteotrophin, whose secretion continues after stalk section, and a uterine luteolysin that is dominant to the luteotrophic stimulus, and can still function normally after pituitary stalk section. The fact that the corpus luteum of the hysterectomised animal cannot function for more than about 15 days after stalk section suggests that the luteotrophic stimulus may be complex, possibly envolving more than one hormone.


1987 ◽  
Vol 114 (2) ◽  
pp. 231-239 ◽  
Author(s):  
J. P. Hearn ◽  
G. E. Webley

ABSTRACT The interaction between luteotrophic and luteolytic agents in controlling progesterone production by the marmoset corpus luteum in the late luteal phase/early pregnancy was investigated at the local level in vivo using a perfusion cannula system. Perfusion of the prostaglandin F2α(PGF2α) analogue, cloprostenol (0·5 μg/ml), resulted in an immediate fall in progesterone production. This response was not sustained in two out of five corpora lutea but pregnancy was terminated in all animals exposed to PGF2α. Perfusion of human chorionic gonadotrophin (hCG) (4 μg/ml) alone significantly stimulated progesterone secretion but there was no response to hCG when the corpus luteum had previously been perfused with PGF2α. Perfusion with hCG together with PGF2α prevented a fall in progesterone secretion. The results suggest that the luteolytic action of PGF2α in the marmoset may be to prevent luteotrophic support of the corpus luteum. Melatonin (860 pmol/l), perfused either with PGF2α or after PGF2α, stimulated progesterone production. The ability of melatonin to influence progesterone production by the primate corpus luteum may therefore be by both a direct luteotrophic action and the prevention of luteolysis. Application of the perfusion system in order to investigate the ability of deglycosylated hCG to antagonize the action of hCG at the corpus luteum showed the necessity of testing pure preparations of hormones. J. Endocr. (1987) 114, 231–239


1995 ◽  
Vol 7 (3) ◽  
pp. 303 ◽  
Author(s):  
RT Gemmell

The corpus luteum (CL) is a transitory organ which has a regulatory role in reproduction. Sharks, amphibians and reptiles have corpora lutea that produce progesterone which influences the rate of embryonic development. The egg-laying monotremes and the two major mammalian groups, eutherian and marsupial, have a CL that secretes progesterone. Most eutherians have allowed for the uterine development of their young by extending the length of the oestrous cycle and the CL or placenta actively secretes progesterone until birth. Gestation in the marsupial does not extend beyond the length of an oestrous cycle and the major part of fetal development takes place in the pouch. Where the extension of the post-luteal phase in the eutherian has allowed for the uterine development of young, the marsupial has extended the pre-luteal phase of the oestrous cycle and has evolved an alternative reproductive strategy, embryonic diapause. The mechanism for the secretion of hormones from the CL has been controversial for many years. Densely-staining secretory granules have been observed in the CL of sharks, marsupials and eutherians. These granules have been reported to contain relaxin, oxytocin or mesotocin, and progesterone. A hypothesis to suit all available data is that all hormones secreted by the CL are transported within such granules. In conclusion, although there are obvious differences in the mode of reproduction in the two main mammalian groups, it is apparent that there is a great deal of similarity in the hormonal control of regression of the CL and parturition.


1982 ◽  
Vol 95 (1) ◽  
pp. 65-70 ◽  
Author(s):  
G. J. S. Tan ◽  
R. Tweedale ◽  
J. S. G. Biggs

The effects of oxytocin on dispersed luteal cells from human corpora lutea of the menstrual cycle were studied. Oxytocin at a concentration of 4 mi.u./ml produced a slight increase in basal progesterone production. However, higher oxytocin concentrations (400 and 800 mi.u./ml) markedly inhibited both basal and human chorionic gonadotrophin-induced progesterone production. These data provide evidence for an effect of oxytocin on the human corpus luteum. In view of the inhibitory action of oxytocin, increased secretion of this hormone may be important in the demise of the corpus luteum at the end of the menstrual cycle.


Reproduction ◽  
2001 ◽  
pp. 643-648 ◽  
Author(s):  
A Shaham-Albalancy ◽  
Y Folman ◽  
M Kaim ◽  
M Rosenberg ◽  
D Wolfenson

Low progesterone concentrations during the bovine oestrous cycle induce enhanced responsiveness to oxytocin challenge late in the luteal phase of the same cycle. The delayed effect of low progesterone concentrations during one oestrous cycle on uterine PGF(2alpha) secretion after oxytocin challenge on day 15 or 16 of the subsequent cycle was studied by measuring the concentrations of the major PGF(2alpha) metabolite (13,14-dihydro-15-keto PGF(2alpha); PGFM) in plasma. Two experiments were conducted, differing in the type of progesterone treatment and in the shape of the low progesterone concentration curves. In Expt 1, progesterone supplementation with intravaginal progesterone inserts, with or without an active corpus luteum, was used to obtain high, or low and constant plasma progesterone concentrations, respectively. In Expt 2, untreated cows, representing high progesterone treatment, were compared with cows that had low but increasing plasma progesterone concentrations that were achieved by manipulating endogenous progesterone secretion of the corpus luteum. Neither experiment revealed any differences in plasma progesterone concentrations between the high and low progesterone groups in the subsequent oestrous cycle. In both experiments, both groups had similar basal concentrations of PGFM on day 15 (Expt 1) or 16 (Expt 2) of the subsequent oestrous cycle, 18 days after progesterone treatments had ended. In both experiments, the increases in PGFM concentrations in the low progesterone groups after an oxytocin challenge were markedly higher than in the high progesterone groups. These results indicate that low progesterone concentrations during an oestrous cycle have a delayed stimulatory effect on uterine responsiveness to oxytocin during the late luteal phase of the subsequent cycle. This resulting increase in PGF(2alpha) secretion may interfere with luteal maintenance during the early stages of pregnancy.


1967 ◽  
Vol 39 (2) ◽  
pp. 163-171 ◽  
Author(s):  
A. S. EL-SHEIKH ◽  
FRANÇOIS B. SAKLA ◽  
SAFAA O. AMIN

SUMMARY The histological and functional changes of 31 corpora lutea of Egyptian buffaloes during the various phases of the oestrous cycle were studied. The volumes of the corpora lutea were calculated, the volume per cell, the cell volume and the volume of the intercellular spaces were estimated from transverse serial sections stained with haematoxylin and eosin, Mallory's triple stain or van Gieson's stain. The nuclear volumes were also determined and the cytoplasmic volume was calculated. The progesterone content was estimated using column absorption chromatography and a counter-current distribution system. It was concluded that the luteal cells increase both in volume and in number due to mitosis. The luteal cells decrease in volume after the 15th day after ovulation, the cells lose their distinct outlines in the regressive stage and disappear completely in the corpus albicans. There was a parallel increase in luteal cell volume and progesterone content until the 15th post-ovulatory day followed by a decrease in the regressive phase and disappearance of the hormone in the corpus albicans. A highly significant correlation (r = +0·875) was found between the progesterone content and the cytoplasmic volume. Progesterone concentration/g. luteal tissue increased from the corpus haemorrhagicum to the mature corpus luteum, decreased in the regressive corpus luteum and completely disappeared in the corpus albicans.


1988 ◽  
Vol 117 (3) ◽  
pp. 455-460 ◽  
Author(s):  
J. E. Sánchez-Criado ◽  
P. van der Schoot ◽  
J. Th. J. Uilenbroek

ABSTRACT Injection of 1 mg bromocriptine at either 08.00 or 16.00 h on the day of oestrus in rats with 5-day oestrous cycles caused a reduction in the duration of progesterone secretion by the corpus luteum during dioestrous, and a shortening of the ovarian cycle by 1 day. These effects were not present when bromocriptine was injected at 08.00 h on the day of metoestrus. The effect of bromocriptine on progesterone secretion by the corpus luteum was reversed by neutralization of the biological activity of LH at dioestrus by injection of 0·5 ml anti-LH serum at 08.00 h at metoestrus. Injection of the antiserum alone prolonged progesterone secretion by the corpus luteum, but had no effect on the length of dioestrus. These results are interpreted as suggesting (1) that prolactin secretion on the afternoon of oestrus protects the corpus luteum of the rat ovarian cycle against the luteolytic effects of LH secretion during early dioestrus and (2) that prolactin stimulates progesterone secretion in the absence of such a luteolytic action. This response of the corpus luteum of the rat ovarian reproductive cycle to prolactin results in 5-day oestrous cycles. J. Endocr. (1988) 117, 455–460


1992 ◽  
Vol 4 (1) ◽  
pp. 77 ◽  
Author(s):  
JM Wallace ◽  
CJ Ashworth ◽  
RP Aitken ◽  
MA Cheyne

Induction of ovulation post partum is associated with a high incidence of prematurely regressing corpora lutea. However, inadequate luteal function is not the sole reason for pregnancy failure, because ewes with normal corpus luteum function and successful fertilization also fail to establish pregnancies. The effects of suckling status and the interval from post partum to rebreeding on corpus luteum and endometrial function were examined in vivo and in vitro. Ewes were weaned early or allowed to lactate, induced to ovulate using a progesterone-impregnated controlled internal drug release device and an intramuscular injection of pregnant mare serum gonadotrophin, and inseminated (intrauterine) at either 21 or 35 days post partum (n = 10 per group). A further 10 standard ewes whose interval from parturition was in excess of 150 days were included for comparative purposes. On Day 10 after insemination the pregnancy rate was determined in four ewes from each of the post-partum groups and five standard ewes. These ewes were then ovariectomized and hysterectomized for studies in vitro. The incidence of premature luteal regression, as assessed by progesterone concentrations in peripheral blood was independent of the suckling stimulus but dependent on stage post partum (21 days post partum, 6 of 19 ewes; 35 days post partum, 0 of 19 ewes; P less than 0.05). Luteal function was normal in all standard ewes. Ovulation rate, corpus luteum weight, corpus luteum progesterone content and basal progesterone production in vitro were significantly less in 21-day than in 35-day post-partum ewes. Pregnancy rates as determined on Day 10 or at term were low in all post-partum groups (7 out of the 38 ewes inseminated) compared with standard ewes (8 of 10). Uterine function was assessed by culturing endometrial tissue from the tip and body of each uterine horn in the presence of [3H]leucine for 30 h at 37 degrees C. Incorporation of radiolabel into non-dialysable proteins synthesized and secreted by the endometrium in vitro was independent of uterine horn location and suckling status but was significantly lower (P less than 0.001) in media from 21-day than from 35-day post-partum ewes. Irrespective of treatment group, incorporation of radiolabel was positively correlated with mean plasma progesterone concentrations on Days 2-10 after insemination and with basal progesterone production in vitro. Secreted proteins were detected by two-dimensional-polyacrylamide-gel electrophoresis and fluorography.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document