Differential effect of selective block of α2-adrenoreceptors on plasma levels of tumour necrosis factor-α, interleukin-6 and corticosterone induced by bacterial lipopolysaccharide in mice

1995 ◽  
Vol 144 (3) ◽  
pp. 457-462 ◽  
Author(s):  
G Haskó ◽  
I J Elenkov ◽  
V Kvetan ◽  
E S Vizi

Abstract The effect of selective block of α2-adrenoreceptors on plasma levels of tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6) and corticosterone induced by bacterial lipopolysaccharide (LPS) was investigated in mice using ELISA and RIA. It was found that the LPS-induced TNF-α response was significantly blunted in mice pretreated with CH-38083, a novel and highly selective α2-adrenoreceptor antagonist (the α2/α1 ratio is >2000). In contrast, LPS-induced increases in both corticosterone and IL-6 plasma levels were further increased by CH-38083. Since it has recently been shown that the selective block of α2-adrenoreceptors located on noradrenergic axon terminals resulted in an increase in the release of noradrenaline (NA), both in the central and peripheral nervous systems, and, in our experiments, that propranolol prevented the effect of α2-adrenoreceptor blockade on TNF-α plasma levels induced by LPS, it seems likely that the excessive stimulation by NA of β-adrenoreceptors located on cytokine-secreting immune cells is responsible for this action. Since it is generally accepted that increased production of TNF-α is involved in the pathogenesis of inflammation and endotoxin shock on the one hand, and corticosterone and even IL-6 are known to possess anti-inflammatory properties on the other hand, it is suggested that the selective block of α2-adrenoreceptors might be beneficial in the treatment of inflammation and/or endotoxin shock. Journal of Endocrinology (1995) 144, 457–462

2016 ◽  
Vol 36 (1) ◽  
Author(s):  
Abbas Jawad Al-Shabany ◽  
Alan John Moody ◽  
Andrew David Foey ◽  
Richard Andrew Billington

Bacterial lipopolysaccharide induces changes in intracellular NAD+ levels in a pro-inflammatory, but not an anti-inflammatory, macrophage model that are correlated with the release of the pro-inflammatory cytokine tumour necrosis factor-α (TNF-α).


2003 ◽  
Vol 12 (6) ◽  
pp. 355-359
Author(s):  
E. Jablonskaca ◽  
W. Puzewska ◽  
M. Marcinczyk ◽  
J. Jablonski

Background:In our previous study we found that rhsIL-6R, along with recombinant human interleukin-6, plays a regulatory role in the immune response by modulating the tumour necrosis factor-α (TNF-α) expression and its production by peripheral blood mononuclearcells (PBMC). We also suggested that sIL-6R with IL-6 secreted by human PMN (neutrophils) influenced the TNF-α expression and its production by autologous PBMC.Aims:Since soluble gp130 (sgp130) is a natural inhibitor for sIL-6R/interleukin-6 responses, in the present study we estimated an effect of exogenous recombinant human sgp130 and sgp130 secreted by PMN on the TNF-α expression and its production by PBMC.Methods:Cells were isolated from whole blood of healthy persons. The PMN were cultured in 96-well plates for 1 h at 37°C in a humidified incubator with 5% CO2. After the incubation, the culture supernatant of PMN was removed and added to the PBMC. PBMC were incubated for 1 h at 37°C in the same conditions. Cytoplasmic protein fractions of PMN and, for comparative purpose of PBMC, were analysed for presence of sgp130 by western blotting with the use of monoclonal antibody capable of detecting this protein. In the culture supernatants of PMN we examined the concentrations of sgp130 by human enzyme-linked immunosorbent assay. TNF-α was measured at the protein levels as well as the mRNA levels.Results and conclusions:The present results revealed that exogenous recombinant human sgp130 modulates the TNF-α expression and production by PBMC. In contrast, we did not find any effect of sgp130 secreted by PMN on the TNF-α expression and its production by autologous PBMC.


Sign in / Sign up

Export Citation Format

Share Document