Interleukin-1 effect on glycemia in the non-obese diabetic mouse at the pre-diabetic stage

1996 ◽  
Vol 148 (1) ◽  
pp. 139-148 ◽  
Author(s):  
A Amrani ◽  
M Jafarian-Tehrani ◽  
P Mormède ◽  
S Durant ◽  
J-M Pleau ◽  
...  

Abstract Cytokines, particularly interleukin 1 (IL-1) and tumor necrosis factor, are known to induce hypoglycemia in normal rodents or different experimental models of type II diabetes. We investigated, at the pre-diabetic stage, the effect of short-term administration of murine recombinant interleukin-1α (mrIL-1α) on the levels of glucose, insulin and corticosterone in the non-obese diabetic (NOD) mouse, a spontaneous model of type I diabetes. Two-month-old, pre-diabetic NOD mice of both sexes were insensitive to mrIL-1α (12·5 and 50 μg/kg) 2 h after administration, the time at which the maximal decrease (around 50%) was observed in the C57BL/6 mouse strain. Kinetic studies however showed that mrIL-1α lowered glycemia in both sexes of NOD mice, but the effect was limited and delayed. In the NOD and C57BL/6 strains, mrIL-1α had no influence on insulin levels in females, but significantly increased them in males (P<0·0001). Castration of NOD males abrogated the stimulatory effect of mrIL-1α on insulin secretion. Corticosterone secretion was stimulated by mrIL-1α in both sexes of NOD and C57BL/6 mice, and this effect was faster and greater in NOD females than in C57BL/6 females. The incomplete hypoglycemic response to mrIL-1α in females may be attributed to the anti-insulin effect of glucocorticoids, an effect which can be demonstrated when mrIL-1α is administered to adrenalectomized animals or when mrIL-1α is administered together with the glucocorticoid antagonist RU38486. In NOD males, in contrast, glucocorticoids did not play a major role in the limited hypoglycemic response to mrIL-1α, since RU38486 and adrenalectomy were not able to unmask a hypoglycemic effect. Moreover, NOD mice of both sexes were less sensitive than C57BL/6 mice to the hypoglycemic effect of insulin (2·5 U/kg), which suggests some degree of insulin-resistance in NOD mice. With regard to the effect of IL-1 on NOD mouse glycemia, therefore, these results suggest that glucocorticoids and/or androgens, according to the animal's sex, may induce a state of insulin-resistance. Journal of Endocrinology (1996) 148, 139–148

2021 ◽  
Author(s):  
Ariel Galindo-Albarrán ◽  
Sarah Castan ◽  
Jérémy C. Santamaria ◽  
Olivier P. Joffre ◽  
Bart Haegeman ◽  
...  

Regulatory T lymphocytes expressing the forkhead/winged helix transcription factor Foxp3 (Treg) play a vital role in the protection of the organism from autoimmune disease and other immunopathologies. The antigen-specificity of Treg plays an important role in their <i>in vivo</i> activity. We therefore assessed the diversity of the T cell receptors for antigen (TCR) expressed by Treg newly developed in the thymus of autoimmune type I diabetes-prone NOD mice and compared it to the control mouse strain C57BL/6. Our results demonstrate that usage of the TCRa and TCRb variable (V) and joining (J) segments, length of the complementarity determining region (CDR) 3, and the diversity of the TCRa and TCRb chains are comparable between NOD and C57BL/6 mice. Genetic defects affecting the diversity of the TCR expressed by newly developed Treg therefore do not appear to be involved in the etiology of type I diabetes in the NOD mouse.


2021 ◽  
Author(s):  
Ariel Galindo-Albarrán ◽  
Sarah Castan ◽  
Jérémy C. Santamaria ◽  
Olivier P. Joffre ◽  
Bart Haegeman ◽  
...  

Regulatory T lymphocytes expressing the forkhead/winged helix transcription factor Foxp3 (Treg) play a vital role in the protection of the organism from autoimmune disease and other immunopathologies. The antigen-specificity of Treg plays an important role in their <i>in vivo</i> activity. We therefore assessed the diversity of the T cell receptors for antigen (TCR) expressed by Treg newly developed in the thymus of autoimmune type I diabetes-prone NOD mice and compared it to the control mouse strain C57BL/6. Our results demonstrate that usage of the TCRa and TCRb variable (V) and joining (J) segments, length of the complementarity determining region (CDR) 3, and the diversity of the TCRa and TCRb chains are comparable between NOD and C57BL/6 mice. Genetic defects affecting the diversity of the TCR expressed by newly developed Treg therefore do not appear to be involved in the etiology of type I diabetes in the NOD mouse.


1999 ◽  
Vol 19 (12) ◽  
pp. 8646-8659 ◽  
Author(s):  
Takuma Hayashi ◽  
Denise Faustman

ABSTRACT The nonobese diabetic (NOD) mouse is an animal model of human type I diabetes with a strong genetic component that maps to the major histocompatibility complex (MHC) of the genome. We have identified in NOD lymphocytes a specific proteasome defect that results from the lack of the LMP2 subunit. The pronounced proteasome defect results in defective production and activation of the transcription factor NF-κB, which plays an important role in immune and inflammatory responses as well as in preventing apoptosis induced by tumor necrosis factor alpha. The defect in proteasome function in NOD mouse splenocytes was evident from impaired NF-κB subunit p50 and p52 generation by proteolytic processing and impaired degradation of the NF-κB-inhibitory protein IκBα. An obligatory role of MHC-linked proteasome subunits in transcription factor processing and activation has been established in a spontaneous-disease model and mutant cells similarly lacking the MHC-encoded subunit. These data suggest that NOD proteasome dysfunction is due to a tissue- and developmental-stage-specific defect in expression of the MHC-linkedLmp2 gene, resulting in altered transcription factor NF-κB activity, and that this defect contributes to pathogenesis in NOD mice. These observations are consistent with the diverse symptomatology of type I diabetes and demonstrate clear sex-, tissue-, and age-specific differences in the expression of this error which parallel the initiation and disease course of insulin-dependent (type I) diabetes mellitus.


2008 ◽  
Vol 205 (1) ◽  
pp. 207-218 ◽  
Author(s):  
Renu Jain ◽  
Danielle M. Tartar ◽  
Randal K. Gregg ◽  
Rohit D. Divekar ◽  
J. Jeremiah Bell ◽  
...  

The role of Th17 cells in type I diabetes (TID) remains largely unknown. Glutamic acid decarboxylase (GAD) sequence 206–220 (designated GAD2) represents a late-stage epitope, but GAD2-specific T cell receptor transgenic T cells producing interferon γ (IFNγ) protect against passive TID. Because IFNγ is known to inhibit Th17 cells, effective presentation of GAD2 peptide under noninflammatory conditions may protect against TID at advanced disease stages. To test this premise, GAD2 was genetically incorporated into an immunoglobulin (Ig) molecule to magnify tolerance, and the resulting Ig-GAD2 was tested against TID at different stages of the disease. The findings indicated that Ig-GAD2 could not prevent TID at the preinsulitis phase, but delayed TID at the insulitis stage. More importantly, Ig-GAD2 sustained both clearance of pancreatic cell infiltration and β-cell division and restored normoglycemia when given to hyperglycemic mice at the prediabetic stage. This was dependent on the induction of splenic IFNγ that inhibited interleukin (IL)-17 production. In fact, neutralization of IFNγ led to a significant increase in the frequency of Th17 cells, and the treatment became nonprotective. Thus, IFNγ induced by an adjuvant free antigen, contrary to its usual inflammatory function, restores normoglycemia, most likely by localized bystander suppression of pathogenic IL-17–producing cells.


Diabetes ◽  
1986 ◽  
Vol 35 (4) ◽  
pp. 496-499 ◽  
Author(s):  
T. Toyota ◽  
J. Satoh ◽  
K. Oya ◽  
S. Shintani ◽  
T. Okano

2019 ◽  
Vol 32 (2) ◽  
pp. 117-131
Author(s):  
Minoru Matsumoto ◽  
Koichi Tsuneyama ◽  
Junko Morimoto ◽  
Kazuyoshi Hosomichi ◽  
Mitsuru Matsumoto ◽  
...  

Abstract Tissue-specific autoimmune diseases are assumed to arise through malfunction of two checkpoints for immune tolerance: defective elimination of autoreactive T cells in the thymus and activation of these T cells by corresponding autoantigens in the periphery. However, evidence for this model and the outcome of such alterations in each or both of the tolerance mechanisms have not been sufficiently investigated. We studied these issues by expressing human AIRE (huAIRE) as a modifier of tolerance function in NOD mice wherein the defects of thymic and peripheral tolerance together cause type I diabetes (T1D). Additive huAIRE expression in the thymic stroma had no major impact on the production of diabetogenic T cells in the thymus. In contrast, huAIRE expression in peripheral antigen-presenting cells (APCs) rendered the mice resistant to T1D, while maintaining other tissue-specific autoimmune responses and antibody production against an exogenous protein antigen, because of the loss of Xcr1+ dendritic cells, an essential component for activating diabetogenic T cells in the periphery. These results contrast with our recent demonstration that huAIRE expression in both the thymic stroma and peripheral APCs resulted in the paradoxical development of muscle-specific autoimmunity. Our results reveal that tissue-specific autoimmunity is differentially controlled by a combination of thymic function and peripheral tolerance, which can be manipulated by expression of huAIRE/Aire in each or both of the tolerance mechanisms.


Cardiology ◽  
1990 ◽  
Vol 77 (5) ◽  
pp. 63-66
Author(s):  
L. Benzi ◽  
F. Sabino ◽  
A.M. Ciccarone ◽  
P. Cecchetti ◽  
G. Di Ciann&iuml; ◽  
...  

1993 ◽  
Vol 178 (3) ◽  
pp. 793-803 ◽  
Author(s):  
P L Podolin ◽  
A Pressey ◽  
N H DeLarato ◽  
P A Fischer ◽  
L B Peterson ◽  
...  

The development of type I diabetes in the nonobese diabetic (NOD) mouse is under the control of multiple genes, one or more of which is linked to the major histocompatibility complex (MHC). The MHC class II region has been implicated in disease development, with expression of an I-E transgene in NOD mice shown to provide protection from insulitis and diabetes. To examine the effect of expressing an I-E+ or I-E- non-NOD MHC on the NOD background, three I-E+ and three I-E- NOD MHC congenic strains (NOD.H-2i5, NOD.H-2k, and NOD.H-2h2, and NOD.H-2h4, NOD.H-2i7, and NOD.H-2b, respectively) were developed. Of these strains, both I-E+ NOD.H-2h2 and I-E- NOD.H-2h4 mice developed insulitis, but not diabetes. The remaining four congenic strains were free of insulitis and diabetes. These results indicate that in the absence of the NOD MHC, diabetes fails to develop. Each NOD MHC congenic strain was crossed with the NOD strain to produce I-E+ and I-E- F1 mice; these mice thus expressed one dose of the NOD MHC and one dose of a non-NOD MHC on the NOD background. While a single dose of a non-NOD MHC provided a large degree of disease protection to all of the F1 strains, a proportion of I-E+ and I-E- F1 mice aged 5-12 mo developed insulitis and cyclophosphamide-induced diabetes. When I-E+ F1 mice were aged 9-17 mo, spontaneous diabetes developed as well. These data are the first to demonstrate that I-E+ NOD mice develop diabetes, indicating that expression of I-E in NOD mice is not in itself sufficient to prevent insulitis or diabetes. In fact, I-E- F1 strains were no more protected from diabetes than I-E+ F1 strains, suggesting that other non-NOD MHC-linked genes are important in protection from disease. Finally, transfer of NOD bone marrow into irradiated I-E+ F1 recipients resulted in high incidences of diabetes, indicating that expression of non-NOD MHC products in the thymus, in the absence of expression in bone marrow-derived cells, is not sufficient to provide protection from diabetes.


1987 ◽  
Vol 165 (6) ◽  
pp. 1639-1654 ◽  
Author(s):  
L S Wicker ◽  
B J Miller ◽  
L Z Coker ◽  
S E McNally ◽  
S Scott ◽  
...  

Genetic analysis of the development of diabetes and insulitis has been performed in the nonobese diabetic (NOD) mouse strain, a model of insulin-dependent (type I) diabetes mellitus. (NOD X C57BL/10)F1, F2, and (F1 X NOD) first-, second-, and third-backcross generations were studied. The data obtained were consistent with the hypothesis that diabetes is controlled by at least three functionally recessive diabetogenic genes, or gene complexes, one of which is linked to the MHC of the NOD. In contrast, pancreatic inflammation leading to insulitis was found to be controlled by a single incompletely dominant gene. One of the two diabetogenic loci that is not linked to the MHC appears to be essential for the development of severe insulitis. This diabetogenic gene may be identical to the gene that controls the initiation of the autoimmune response that progresses to insulitis. Although this gene appears to be functionally recessive in its control of diabetes, it is incompletely dominant in its control of insulitis. The MHC-linked diabetogenic gene, although not required for the development of insulitis, apparently influences the progression of the autoimmune response since NOD MHC homozygotes in the backcross generations displayed the highest incidence and most severe cases of insulitis. Interestingly, we have found two MHC heterozygous backcross females that have become diabetic, suggesting that either the MHC-linked diabetogenic gene is not strictly recessive or that a recombination event has occurred between the diabetogenic gene and the K or I-A regions of the MHC. The third diabetogenic locus appears to influence the progression of severe insulitis to overt diabetes. In animals homozygous at this locus, diabetes may result from a decreased ability to develop a protective suppressor response to the autoimmune process.


Sign in / Sign up

Export Citation Format

Share Document