scholarly journals Insulin and IGF-I are necessary for FSH-induced cytochrome P450 aromatase but not cytochrome P450 side-chain cleavage gene expression in oestrogenic bovine granulosa cells in vitro

2002 ◽  
Vol 174 (3) ◽  
pp. 499-507 ◽  
Author(s):  
JM Silva ◽  
CA Price

The earliest biochemical indicators of ovarian follicle deviation in cattle include lower oestradiol and free IGF concentrations in subordinate compared with dominant follicles. We determined if decreases in FSH, IGF-I or insulin cause decreased P450 aromatase (P450arom) or P450 cholesterol side-chain cleavage (P450scc) mRNA expression in oestrogenic bovine granulosa cells in vitro. In the first experiment, cells obtained from small follicles (2-5 mm diameter) were cultured in serum-free medium supplemented with physiological concentrations of FSH, IGF-I and insulin for 4 days. A decrease in specific hormone concentration was produced by replacing 70% of spent medium with medium devoid of FSH, insulin, or insulin and IGF-I on day 4 and again on day 5 of culture. Cultures were terminated on day 7. A reduction in FSH concentrations during the last 3 days of culture decreased P450arom and P450scc mRNA levels. A reduction in insulin reduced P450arom but not P450scc mRNA levels, and a reduction of both insulin and IGF-I concentrations further decreased P450arom mRNA levels and decreased P450scc mRNA levels. In a second experiment, cells obtained from small follicles (2-5 mm diameter) were cultured with insulin (100 ng/ml) without FSH for 4 days, and then insulin was withdrawn from the culture and FSH added for a further 3 days. The withdrawal of insulin decreased (P<0.02) oestradiol accumulation and reduced P450arom mRNA to below detectable levels, but did not affect P450scc mRNA levels. The addition of FSH transiently increased oestradiol secretion and P450arom mRNA levels, but P450arom mRNA levels were undetectable at the end of the culture period. The addition of FSH significantly enhanced P450scc mRNA levels and progesterone accumulation. These data demonstrated that a reduction of insulin-like activity reduced aromatase gene expression in bovine follicles without necessarily affecting progesterone synthetic capability, and thus may initiate follicle regression in cattle at the time of follicle divergence.

1996 ◽  
Vol 151 (3) ◽  
pp. 365-373 ◽  
Author(s):  
L J Spicer ◽  
T D Hamilton ◽  
B E Keefer

Abstract Studies were conducted to determine the importance of de novo cholesterol synthesis and cholesterol side-chain cleavage enzyme in the action of IGF-I in bovine granulosa and thecal cells. Granulosa and thecal cells from bovine follicles were cultured for 2 days in 10% fetal calf serum and then treated with luteinizing hormone (100 ng/ml) and IGF-I (0 or 100 ng/ml) for an additional 2 days in serum-free medium. During the last 24 h of treatment, cells were concomitantly treated with simvastatin (0, 0·5 or 5 μg/ml) or 25-hydroxycholesterol (0 or 10 μg/ml). Simvastatin, a potent inhibitor of the key enzyme controlling de novo cholesterol synthesis, 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, completely inhibited (P<0·05) progesterone production by granulosa cells and progesterone and androstenedione production by thecal cells. Simvastatin also inhibited (P<0·05) granulosa cell and thecal cell proliferation. Concomitant treatment with mevalonate, an immediate product of HMG-CoA reductase, attenuated the inhibitory effect of simvastatin on progesterone and androstenedione production by thecal cells and blocked the inhibitory effect of simvastatin on cell proliferation. The addition of 25-hydroxycholesterol, a substrate for cholesterol side-chain cleavage enzyme, had no effect (P>0·10) on IGF-I-stimulated progesterone or androstenedione production by thecal cells and actually inhibited (P<0·05) IGF-I-stimulated progesterone production by granulosa cells. These results provide indirect evidence indicating that stimulation of HMG-CoA reductase is an important locus of IGF-I action in bovine granulosa and thecal cells, whereas IGF-I has little or no effect on side-chain cleavage enzyme activity in these same cell types under the culture conditions employed. Journal of Endocrinology (1996) 151, 365–373


1994 ◽  
Vol 12 (2) ◽  
pp. 239-249 ◽  
Author(s):  
E L Yong ◽  
S G Hillier ◽  
M Turner ◽  
D T Baird ◽  
S C Ng ◽  
...  

ABSTRACT The co-ordinated biosynthesis of progesterone and oestradiol in the human ovary is critical for reproductive cyclicity and eventual pregnancy. The crucial regulatory enzymes for progesterone and oestradiol biosynthesis in granulosa cells are the cholesterol side-chain cleavage (P450scc) and aromatase (P450arom) enzymes respectively. We utilized the cDNA sequences encoding P450arom and P450scc to examine the roles of FSH and LH, and their intracellular second messenger, cyclic AMP (cAMP), in regulating steroidogenic gene expression. Mature granulosa cells (aspirated before the onset of the endogenous LH surge) and granulosa lutein cells (obtained after an ovulatory dose of human chorionic gonadotrophin) were cultured for 4 days with FSH, LH or dibutyryl cAMP (dbcAMP). After the period of culture, total RNA was extracted from granulosa cells and Northern analyses were performed utilizing 32P-labelled cDNAs encoding P450arom and P450scc. Spent culture media were analysed for steroid and cAMP content. Both FSH and LH strongly stimulated P450arom mRNA expression and oestradiol production in mature granulosa cells. On the other hand, P450scc mRNA expression and progesterone biosynthesis were weakly induced by FSH; maximal synthesis occurred only in the presence of LH. With both gonadotrophins at equivalent concentrations, LH generated a 30-fold higher level of cAMP than FSH. Furthermore, the differential effects of FSH and LH on P450 mRNA expression were reproduced by the presence of low and high concentrations of dbcAMP respectively. LH (and high levels of dbcAMP) increased P450arom mRNA expression in mature granulosa cells but inhibited its accumulation in granulosa lutein cells. In contrast, it stimulated P450scc mRNA expression and progesterone synthesis in both mature granulosa and granulosa lutein cells. Therefore, FSH/low cAMP levels stimulated P450arom gene expression and oestradiol production, while LH/high cAMP levels maximally induced P450scc gene expression and function, in a development-related manner consistent with steroid production in vivo. These findings support the hypothesis that one set of genes (like P450arom) in human granulosa cells is regulated by FSH/low cAMP levels and another (like P450scc) by LH/high cAMP levels.


2003 ◽  
Vol 176 (1) ◽  
pp. 151-161 ◽  
Author(s):  
V Sriraman ◽  
MR Sairam ◽  
AJ Rao

The relative role of LH and FSH in regulation of differentiation of Leydig cells was assessed using an ethane 1,2-dimethylsulfonate (EDS)-treated rat model in which endogenous LH or FSH was neutralized from day 3 to day 22 following EDS treatment. Serum testosterone and the in vitro response of the purified Leydig cells to human chorionic gonadotropin (hCG) was monitored. In addition RNA was isolated from the Leydig cells to monitor the steady-state mRNA levels by RT-PCR for 17alpha-hydroxylase, side chain cleavage enzyme, steroidogenic acute regulatory protein (StAR), LH receptor, estrogen receptor (ER-alpha) and cyclophilin (internal control). Serum testosterone was undetected and the isolated Leydig cells secreted negligible amount of testosterone on stimulation with hCG in the group of rats that were treated with LH antiserum following EDS treatment. RT-PCR analysis revealed the absence of message for cholesterol side chain cleavage enzyme and 17alpha-hydroxylase although ER-alpha and LH receptor mRNA could be detected, indicating the presence of undifferentiated precursor Leydig cells. In contrast, the effects following deprival of endogenous FSH were not as drastic as seen following LH neutralization. Deprival of endogenous FSH in EDS-treated rats led to a significant decrease in serum testosterone and in vitro response to hCG by the Leydig cells. Also, there was a significant decrease in the steady-state mRNA levels of 17alpha-hydroxylase, cholesterol side chain cleavage enzyme, LH receptor and StAR as assessed by a semiquantitative RT-PCR. These results establish that while LH is obligatory for the functional differentiation of Leydig cells, repopulation of precursor Leydig cells is independent of LH, and also unequivocally establish an important role for FSH in regulation of Leydig cell function.


2006 ◽  
Vol 189 (3) ◽  
pp. 455-463 ◽  
Author(s):  
N R Kendall ◽  
P Marsters ◽  
L Guo ◽  
R J Scaramuzzi ◽  
B K Campbell

Subfertility that will respond to appropriate copper supplementation is a widespread problem in the national dairy herd. The aims of this study were to determine the effect of copper and/or copper chelating thiomolybdates on LH-induced differentiation by looking at the effects on androgen production, steroidogenic enzymes (cytochrome P450 17α-hydroxylase and cytochrome P450 side-chain cleavage) and lysyl oxidase mRNA expression in cultured theca cells maintained under serum-free conditions. The effect of thiomolybdates and copper on LH differentiation was investigated by supplementing (ammonium) tetrathiomolybdate to optimum theca cell culture media at 0–100 μg/ml, copper (chloride) at equimolar concentrations (0–51.6 μg/ml) or equimolar combinations of both media. Lysyl oxidase mRNA expression was investigated with semi-quantitative RT-PCR, whilst expression of cytochrome P450 17α-hydroxylase and cytochrome P450 side-chain cleavage mRNA was examined using real time PCR. Both PCRs used bovine specific primers and cell lysates obtained from bovine theca cells cultured for 6 days and in the presence or absence of the 100 μg/ml dose of thiomolybdate and equimolar copper thiomolybdate. Thiomolybdate depressed androstenedione production in a dose-dependent manner at doses greater than 1 μg/ml at 96 h (P<0.05); doses above 20 μg/ml were all greatly reduced at all time points and at 192 h when related to numbers of cells (P<0.001). Copper alone had no effect at physiological doses, but the use of the equimolar copper thiomolybdate reversed the effect of tetrathiomolybdates on androstenedione production at the 20 μg/ml dose. Thiomolybdate supplementation, with and without copper, had no significant effect on the level of lysyl oxidase or cytochrome P450 side-chain cleavage expression. However, cytochrome P450 17α-hydroxylase expression was significantly increased (P<0.05) by tetrathiomolybdate, possibly due to a local regulatory system. In conclusion, these results demonstrate that thiomolybdates can prevent LH-induced differentiation of bovine theca cells in vitro and that these effects can be ameliorated by copper supplementation. Our results also indicate that it is unlikely that the effects of thiomolybdate are mediated at the transcriptional level and further work is required to determine if thiomolybdate exerts its effects through post-translation processing or some other unrelated mechanism. Overall, these data support the hypothesis that copper responsive subfertility results from perturbation of the normal pattern of ovarian steroidogenesis.


2002 ◽  
Vol 87 (6) ◽  
pp. 2849-2856 ◽  
Author(s):  
Noriko Yamamoto ◽  
Lane K. Christenson ◽  
Jan M. McAllister ◽  
Jerome F. Strauss

Growth differentiation factor-9 (GDF-9), a member of the transforming growth factor superfamily, modulates the development and function of granulosa and theca cells. Targeted deletion of GDF-9 in the mouse revealed that GDF-9 was essential for the establishment of the thecal cell layer during early folliculogenesis. During later stages of follicular development, the roles of GDF-9 are less well understood, but it has been postulated that oocyte-derived GDF-9 may prevent premature luteinization of follicular cells, based on its ability to modulate steroidogenesis by rodent ovarian cells. In the rodent, GDF-9 is expressed solely by the oocyte from the early primary follicular stage through ovulation. Recent studies in the rhesus monkey demonstrated that granulosa cells express GDF-9, suggesting a broader role for this protein in ovarian function in primates. We examined the effect of recombinant GDF-9 on proliferating human granulosa and thecal cell steroidogenesis and the expression of steroidogenic acute regulatory protein (StAR), P450 side-chain cleavage, and P450 aromatase. We also examined granulosa cell GDF-9 expression by quantitative RT-PCR and by Western analysis. GDF-9 inhibited 8-Br-cAMP-stimulated granulosa progesterone synthesis by approximately 40%, but did not affect basal progesterone production. Concordant with reduced steroid production, 8-Br-cAMP-stimulated StAR protein expression was reduced approximately 40% in granulosa cells, as were expression of StAR mRNA and StAR promoter activity. Additionally, GDF-9 inhibited 8-Br-cAMP-stimulated expression of P450 side-chain cleavage and P450 aromatase. Human granulosa cells expressed GDF-9, as determined by RT-PCR and Western analysis. Treatment of human thecal cells with GDF-9 blocked forskolin-stimulated progesterone, 17α-hydroxyprogesterone, and dehydroepiandrosterone synthesis. Thecal cells exhibited greater sensitivity to GDF-9, suggesting that this cell may be a primary target of GDF-9. Moreover, GDF-9 increased thecal cell numbers during culture, but had no effect on granulosa cell growth. Our findings implicate GDF-9 in the modulation of follicular steroidogenesis, especially theca cell function. Because GDF-9 mRNA and protein are detectable in granulosa-lutein cells after the LH surge, the concept of GDF-9 as a solely oocyte-derived luteinization inhibitor needs to be reevaluated.


Sign in / Sign up

Export Citation Format

Share Document