scholarly journals Macrophage migration inhibitory factor: a neuroendocrine modulator of chronic inflammation

2003 ◽  
Vol 179 (1) ◽  
pp. 15-23 ◽  
Author(s):  
JA Baugh ◽  
SC Donnelly

The diverse actions of macrophage migration inhibitory factor (MIF) within the immuno-neuroendocrine system are yet to be fully understood, but it is clear that MIF plays a pivotal role in the regulation of both the innate and adaptive immune response. An emerging body of data presently indicates that MIF's position within the cytokine cascade is to act in concert with glucocorticoids to control the 'set point' and magnitude of the immune and inflammatory response. In this article we will review the actions of MIF within the immune system and discuss the overlapping and contrasting aspects of MIF and glucocorticoid biology. In particular we will focus on the role of MIF within the immuno-neuroendocrine interface and suggest molecular mechanisms by which MIF may counter-regulate glucocorticoid function. Finally we will discuss emerging evidence that functional MIF gene-promoter polymorphisms render one susceptible to elevated MIF expression, and the development of an exaggerated immune/inflammatory response that potentiates the progression to chronic inflammatory disease.

2020 ◽  
Vol 9 (9) ◽  
pp. 2936
Author(s):  
Luisa Averdunk ◽  
Jürgen Bernhagen ◽  
Karl Fehnle ◽  
Harald Surowy ◽  
Hermann-Josef Lüdecke ◽  
...  

Background: Macrophage Migration Inhibitory Factor (MIF) is highly elevated after cardiac surgery and impacts the postoperative inflammation. The aim of this study was to analyze whether the polymorphisms CATT5–7 (rs5844572/rs3063368,“-794”) and G>C single-nucleotide polymorphism (rs755622,-173) in the MIF gene promoter are related to postoperative outcome. Methods: In 1116 patients undergoing cardiac surgery, the MIF gene polymorphisms were analyzed and serum MIF was measured by ELISA in 100 patients. Results: Patients with at least one extended repeat allele (CATT7) had a significantly higher risk of acute kidney injury (AKI) compared to others (23% vs. 13%; OR 2.01 (1.40–2.88), p = 0.0001). Carriers of CATT7 were also at higher risk of death (1.8% vs. 0.4%; OR 5.12 (0.99–33.14), p = 0.026). The GC genotype was associated with AKI (20% vs. GG/CC:13%, OR 1.71 (1.20–2.43), p = 0.003). Multivariate analyses identified CATT7 predictive for AKI (OR 2.13 (1.46–3.09), p < 0.001) and death (OR 5.58 (1.29–24.04), p = 0.021). CATT7 was associated with higher serum MIF before surgery (79.2 vs. 50.4 ng/mL, p = 0.008). Conclusion: The CATT7 allele associates with a higher risk of AKI and death after cardiac surgery, which might be related to chronically elevated serum MIF. Polymorphisms in the MIF gene may constitute a predisposition for postoperative complications and the assessment may improve risk stratification and therapeutic guidance.


2009 ◽  
Vol 200 (4) ◽  
pp. 629-637 ◽  
Author(s):  
Gordon A. Awandare ◽  
Jeremy J. Martinson ◽  
Tom Were ◽  
Collins Ouma ◽  
Gregory C. Davenport ◽  
...  

Endocrinology ◽  
2005 ◽  
Vol 146 (3) ◽  
pp. 1321-1327 ◽  
Author(s):  
Louisa Y. F. Wong ◽  
Bernard M. Y. Cheung ◽  
Yuk-Yin Li ◽  
Fai Tang

Adrenomedullin (ADM) is a potent vasorelaxant peptide that plays important roles in cardiovascular homeostasis and inflammatory response. ADM derived from macrophages is one of the major sources of ADM that is produced in the inflammatory process. To assess the functions of ADM in inflammation, we studied the temporal changes in ADM production and its effect on secretion of macrophage migration inhibitory factor (MIF) and cytokine response of NR8383 rat macrophages activated by lipopolysaccharide (LPS). NR8383 cells were stimulated by LPS in the absence and presence of exogenous ADM, and the concentrations of ADM, MIF, and proinflammatory cytokines (IL-6, TNF-α, and IL-1β) in the culture media and gene expressions of the cells were measured. We confirmed that the secretion and mRNA expression of ADM in the macrophages were markedly increased by LPS. ADM increased initial secretion of MIF and IL-1β from both nonstimulated and LPS-stimulated cells, and it also increased basal and LPS-induced IL-6 secretion of the cells by 2- to 15-fold. However, it reduced secretion of TNF-α from LPS-stimulated cells by 34–56%. Our results suggest that ADM modulates MIF secretion and cytokine production and plays important roles in both the initiation and propagation of the inflammatory response.


Sign in / Sign up

Export Citation Format

Share Document