scholarly journals Improvement of metabolic state in an animal model of nutrition-dependent type 2 diabetes following treatment with S 23521, a new glucagon-like peptide 1 (GLP-1) analogue

2005 ◽  
Vol 184 (3) ◽  
pp. 505-513 ◽  
Author(s):  
G Üçkaya ◽  
P Delagrange ◽  
A Chavanieu ◽  
G Grassy ◽  
M-F Berthault ◽  
...  

Glucagon-like peptide 1 (GLP-1) analogues are considered potential drugs for type 2 diabetes. We studied the effect of a novel GLP-1 analogue, S 23521 ([a8-des R36] GLP-1-[7–37]-NH2), on the metabolic state and β-cell function, proliferation and survival in the Psammomys obesus model of diet-induced type 2 diabetes. Animals with marked hyperglycaemia after 6 days of high-energy diet were given twice-daily s.c. injection of 100 μg/kg S 23521 for 15 days. Food intake was significantly decreased in S 23251-treated P. obesus; however, there was no significant difference in body weight from controls. Progressive worsening of hyperglycaemia was noted in controls, as opposed to maintenance of pre-treatment glucose levels in the S 23521 group. Prevention of diabetes progression was associated with reduced mortality. In addition, the treated group had higher serum insulin, insulinogenic index and leptin, whereas plasma triglyceride and non-esterified fatty acid levels were decreased. S 23521 had pronounced effect on pancreatic insulin, which was 5-fold higher than the markedly depleted insulin reserve of control animals. Immunohistochemical analysis showed islet degranulation with disrupted morphology in untreated animals, whereas islets from S 23521-treated animals appeared intact and filled with insulin; β-cell apoptosis was approximately 70% reduced, without a change in β-cell proliferation. S 23521 treatment resulted in a 2-fold increase in relative β-cell volume. Overall, S 23521 prevented the progression of diabetes in P. obesus with marked improvement of the metabolic profile, including increased pancreatic insulin reserve, β-cell viability and mass. These effects are probably due to actions of S 23521 both directly on islets and via reduced food intake, and emphasize the feasibility of preventing blood glucose deterioration over time in type 2 diabetes.

2009 ◽  
Vol 43 (9) ◽  
pp. 1433-1444 ◽  
Author(s):  
Joshua J Neumiller ◽  
R Keith Campbell

Objective: To review the pharmacology, pharmacokinetics, efficacy, and safety of liraglutide, a glucagon-like peptide 1 (GLP-1) analog for the treatment of type 2 diabetes mellitus. Data Sources: A MEDLINE search (1966–May 2009) was conducted for English-language articles using the terms glucagon-like peptide 1, incretin mimetic, NN2211, and liraglutide. Abstracts presented at the American Diabetes Association and European Association for the Study of Diabetes annual meetings in 2006, 2007, and 2008 were also searched for relevant data. Study Selection and Data Extraction: Articles pertinent to the pharmacology, pharmacokinetics, efficacy, and safety of liraglutide were reviewed. Data Synthesis: Liraglutide is a GLP-1 analog with pharmacokinetic properties suitable for once-daily administration. Clinical trial data from large, controlled studies demonstrate the effectiveness of liraglutide in terms of hemoglobin A1c (A1C) reduction, reductions in body weight, and the drug's low risk for hypoglycemic events when used as monotherapy. Data also support benefits of liraglutide therapy on β-cell responsiveness to glucose, with animal and in vitro data indicating potential benefits in β-cell mass and neogenesis with liraglutide treatment. Liraglutide has been studied as monotherapy and in combination with metformin, glimepiride, and rosiglitazone for the treatment of type 2 diabetes. Additionally, comparative data with insulin glargine and exenatide therapy are available from Phase 3 trials providing practitioners valuable clinical data on which to base clinical decision making. Overall, liraglutide is well tolerated with dose-dependent nausea, vomiting, and diarrhea being the most commonly reported adverse events in clinical trials. Conclusions: Once-daily administration may provide a therapeutic advantage for liraglutide over twice-daily exenatide, with similar improvements in A1C and body weight observed when liraglutide was compared with exenatide. The glucose-dependent mechanism of insulin release with GLP-1 agonist therapy holds potential clinical significance in the management of postprandial hyperglycemic excursions, with minimal risk of hypoglycemia.


2008 ◽  
Vol 158 (6) ◽  
pp. 773-784 ◽  
Author(s):  
Luc F Van Gaal ◽  
Stephen W Gutkin ◽  
Michael A Nauck

Type 2 diabetes mellitus is associated with progressive decreases in pancreatic β-cell function. Most patients thus require increasingly intensive treatment, including oral combination therapies followed by insulin. Fear of hypoglycemia is a potential barrier to treatment adherence and glycemic control, while weight gain can exacerbate hyperglycemia or insulin resistance. Administration of insulin can roughly mimic physiologic insulin secretion but does not address underlying pathophysiology. Glucagon-like peptide 1 (GLP-1) is an incretin hormone released by the gut in response to meal intake that helps to maintain glucose homeostasis through coordinated effects on islet α- and β-cells, inhibiting glucagon output, and stimulating insulin secretion in a glucose-dependent manner. Biological effects of GLP-1 include slowing gastric emptying and decreasing appetite. Incretin mimetics (GLP-1 receptor agonists with more suitable pharmacokinetic properties versus GLP-1) significantly lower hemoglobin A1c, body weight, and postprandial glucose excursions in humans and significantly improve β-cell function in vivo (animal data). These novel incretin-based therapies offer the potential to reduce body weight or prevent weight gain, although the durability of these effects and their potential long-term benefits need to be studied further. This article reviews recent clinical trials comparing therapy with the incretin mimetic exenatide to insulin in patients with oral treatment failure, identifies factors consistent with the use of each treatment, and delineates areas for future research.


Diabetes ◽  
2013 ◽  
Vol 62 (9) ◽  
pp. 3044-3052 ◽  
Author(s):  
Nils B. Jørgensen ◽  
Carsten Dirksen ◽  
Kirstine N. Bojsen-Møller ◽  
Siv H. Jacobsen ◽  
Dorte Worm ◽  
...  

2009 ◽  
Vol 05 (0) ◽  
pp. 38
Author(s):  
Chantal Mathieu ◽  

Type 2 diabetes is a progressive disease characterised by deteriorating β-cell function and glycaemic control. To counter this, affected individuals require regular intensification of their antidiabetes treatments to provide appropriate metabolic control. However, current treatment options – such as sulphonylureas, thiazolidinediones and insulins – induce weight gain, which can reduce patient acceptance and/or compliance with treatment and may have significant health implications. In addition, many of the antidiabetic therapies raise the risk of hypoglycaemic episodes. Therefore, patients, physicians and healthcare providers are looking for new therapeutic options to address this large and growing burden of diabetes. Incretin-based therapies – including glucagon-like peptide-1 (GLP-1) receptor agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors – are becoming a popular treatment option for patients with type 2 diabetes because they offer many benefits compared with other antidiabetic therapies. First, incretin-based therapies are associated with significant reductions in glycated haemoglobin (HbA1c) with a low inherent risk of hypoglycaemic events. In addition, GLP-1 receptor agonists are associated with reductions in bodyweight and systolic blood pressure. Incretin-based therapies such as liraglutide also offer the potential to improve β-cell function, an important underlying mechanism of type 2 diabetes.


2023 ◽  
Vol 76 (07) ◽  
pp. 6374-2023 ◽  
Author(s):  
ALEKSANDRA GÓRSKA ◽  
MARCIN B. ARCISZEWSKI

Recently, interest in glucagon-like peptide-1 (GLP-1) and other peptides derived from preproglucagon has increased significantly. GLP-1 is a 30-amino acid peptide hormone produced in L-type enteroendocrine cells as a response to food intake. GLP-1 is rapidly metabolized and inactivated by the dipeptidyl peptidase IV enzyme before the hormone leaves the intestine, which increases the likelihood that GLP-1 action is transmitted through sensory neurons in the intestine and liver through the GLP-1 receptor. The main actions of GLP-1 are to stimulate insulin secretion (i.e. act as incretin hormone) and inhibit glucagon secretion, thus contributing to the reduction of postprandial glucose spikes. GLP-1 also inhibits motility and gastrointestinal secretion, and therefore acts as part of the „small bowel brake” mechanism. GLP-1 also appears to be a physiological regulator of appetite and food intake. Because of these effects, GLP-1 or GLP-1 receptor agonists are now increasingly used to treat type 2 diabetes. Reduced GLP-1 secretion may contribute to the development of obesity, and excessive secretion may be responsible for postprandial reactive hypoglycemia. The use of GLP-1 agonists opens up new possibilities for the treatment of type 2 diabetes and other metabolic diseases. In the last two decades, many interesting studies covering both the physiological and pathophysiological role of GLP-1 have been published, and our understanding of GLP-1 has broadened significantly. In this review article, we have tried to describe our current understanding of how GLP-1 works as both a peripheral hormone and as a central neurotransmitter in health and disease. We focused on its biological effects on the body and the potential clinical application in relation to current research.


Sign in / Sign up

Export Citation Format

Share Document