scholarly journals Quasi-Three-Dimensional Simulation of Viscoelastic Flow through a Straight Channel with a Square Cross Section

2006 ◽  
Vol 34 (2) ◽  
pp. 105-113 ◽  
Author(s):  
Shuichi Tanoue ◽  
Tomohiro Naganawa ◽  
Yoshiyuki Iemoto
2006 ◽  
Vol 128 (8) ◽  
pp. 819-828 ◽  
Author(s):  
Jixiang Yin ◽  
Guojun Li ◽  
Zhenping Feng

This paper reported three-dimensional numerical simulations of the steady laminar flow and heat transfer in corrugated-undulated channels with sinusoidal waves, aiming to investigate the effects of intersection angles (θ) between corrugated and undulated plate and Reynolds number (Re) on the flow and heat transfer. The simulations are conducted by using multi-channel computational domain for three different geometries. The code is validated against experimental results and then data for Nusselt number (Nu) and friction factor (f) are presented in a Re range of 100-1500, and intersection angle range of 30-150deg. The simulation confirms the changes of Nuu (averaged over undulated plate) and Nuc (averaged over corrugated plate) with θ representing different characteristics. As θ increases, Nu (Nuu or Nuc) is about 2–16 times higher for the corrugated-undulated configurations CP-UH1 and CP-UP1 and the concomitant f is about 4–100 higher, when compared to a straight channel having square cross section. The minimum of local Nu ( Nuu or Nuc ) is situated at the four contact points where the top plate touches the bottom one, and the high Nu is located upstream of the crest of the conjugate duct. Performance evaluation for the CP-UH1 channel shows that the goodness factors (G) are larger than 1 with the straight channel having a square cross section as a reference, and the 30deg geometry channel has optimal flow area goodness.


2015 ◽  
Vol 107 (3) ◽  
pp. 843-870 ◽  
Author(s):  
Chandan Paul ◽  
Malay K. Das ◽  
K. Muralidhar

Author(s):  
Sicheng Sun ◽  
Jaal Ghandhi ◽  
Xiaoping Qian

Abstract Topology optimization (TO) was conducted for three dimensional static fluid mixers. The problem is optimized using the weakly coupled Navier-Stokes equation at low Reynolds number (Re ≤ 1) and a convection-diffusion equation. The domain was discretized with up to 10 million cells. The optimizations were run with 1024 to 2048 CPUs on a national supercomputer. For a mixer in a square cross-section channel, the mixing was improved by 83% for a modest 2.5 times higher pressure drop compared with the open straight channel. For a cylindrical cross-section tee arrangement, the mixing improved by 91% with a 2.5 times higher pressure drop compared to the straight channel.


2007 ◽  
Vol 329 ◽  
pp. 329-334
Author(s):  
Chuan Zhen Huang ◽  
Rong Guo Hou ◽  
Jun Wang ◽  
X.Y. Lu ◽  
Hong Tao Zhu

Three dimensional simulation of the velocity field of solid-liquid two-phase flow inside the abrasive water jet nozzle was studied by the computational fluid dynamics software (CFD). The complicated velocity field and vectorgraph of the flow in the abrasive water jet nozzle was obtained. In the course of the simulation, the Syamlal-O’Brien model was used to decide the inter-phase drag exchange coefficient. The velocity vectorgraph simulation results indicate that the highest flow speed is occurred at the inlet of the mixing chamber and the flow speed is gradually decreased along the direction of the nozzle axis and got to the lowest speed at the outlet of the nozzle. And also the flow speed in the cross section of the mixing chamber is gradually reduced along the radial direction of the cross section and got to the lowest speed in the verge of the chamber. The comparison of simulation result for the velocity field of water and abrasive exhibits that the velocity of water in the mixing chamber is three or four times higher than that of abrasive.


1992 ◽  
Vol 167 (1) ◽  
pp. 9-21 ◽  
Author(s):  
J. P. Jernot ◽  
P. Bhanu Prasad ◽  
P. Demaleprade

2018 ◽  
Vol 14 (1) ◽  
pp. 1
Author(s):  
Prof. Dr. Jamal Aziz Mehdi

The biological objectives of root canal treatment have not changed over the recentdecades, but the methods to attain these goals have been greatly modified. Theintroduction of NiTi rotary files represents a major leap in the development ofendodontic instruments, with a wide variety of sophisticated instruments presentlyavailable (1, 2).Whatever their modification or improvement, all of these instruments have onething in common: they consist of a metal core with some type of rotating blade thatmachines the canal with a circular motion using flutes to carry the dentin chips anddebris coronally. Consequently, all rotary NiTi files will machine the root canal to acylindrical bore with a circular cross-section if the clinician applies them in a strictboring manner


Sign in / Sign up

Export Citation Format

Share Document