A water retention curve and unsaturated hydraulic conductivity model for deformable soils: consideration of the change in pore-size distribution

Géotechnique ◽  
2013 ◽  
Vol 63 (16) ◽  
pp. 1389-1405 ◽  
Author(s):  
R. HU ◽  
Y.-F. CHEN ◽  
H.-H. LIU ◽  
C.-B. ZHOU
Respuestas ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 33-43
Author(s):  
María Camila Olarte ◽  
Juan Carlos Ruge

In highly porous soils with a susceptibility to collapse, there are points of volumetric variability, due to the present heterogeneity, regarding the diameters of the poral throat. The predominance of a pore size is closely related to certain values of the Water Retention Curve (WRC). However, to date, a possible correlation with particle size distribution (PaSD), obtained using modern, highly reliable gravitational sedimentation methods, has not been studied. The porous clay of lateritic origin under study, was characterized by means of index tests, to know its basic geotechnical behavior. Subsequently, it was analyzed by mercury intrusion porosimetry tests, to estimate the Pore Size Distribution (PSD); filter paper and pressure plate method to obtain the water retention curve; as well as the method of integral measurement of the pressure in the suspension (ISP), to obtain the fine grain size of the material. This article tries to present a proposal of relationship between these parameters, with the aim of improving the understanding in the characterization of this type of materials. The results showed that there is indeed a strong relationship between the particle size distributions, pore size distribution and the water retention curve. Mainly, this is reflected in the geometric places corresponding to the air value entries (AEV) of macropores and micropores. Which coincide with essential parameters of the behavior of the other curves (PaSD and PSD).


1996 ◽  
Vol 32 (10) ◽  
pp. 3025-3031 ◽  
Author(s):  
Edith Perrier ◽  
Michel Rieu ◽  
Garrison Sposito ◽  
Ghislain de Marsily

HortScience ◽  
2010 ◽  
Vol 45 (7) ◽  
pp. 1106-1112 ◽  
Author(s):  
Paraskevi A. Londra

For effective irrigation and fertilization management, the knowledge of substrate hydraulic properties is essential. In this study, a steady-state laboratory method was used to determine simultaneously the water retention curve, θ(h), and unsaturated hydraulic conductivity as a function of volumetric water content, K(θ), and water pressure head, K(h), of five substrates used widely in horticulture. The substrates examined were pure peat, 75/25 peat/perlite, 50/50 peat/perlite, 50/50 coir/perlite, and pure perlite. The experimental retention curve results showed that in the case of peat and its mixtures with perlite, there is a hysteresis between drying and wetting branches of the retention curve. Whereas in the case of coir/perlite and perlite, the phenomenon of hysteresis was less pronounced. The increase of perlite proportion in the peat/perlite mixtures led to a decrease of total porosity and water-holding capacity and an increase of air space. Study of the K(θ) and K(h) experimental data showed that the hysteresis phenomenon of K(θ) was negligible compared with the K(h) data for all substrates examined. Within a narrow range of water pressure head (0 to –70 cm H2O) that occurs between two successive irrigations, a sharp decrease of the unsaturated hydraulic conductivity was observed. The comparison of the K(θ) experimental data between the peat-based substrate mixtures and the coir-based substrate mixture showed that for water contents lower than 0.40 m3·m−3, the hydraulic conductivity of the 50/50 coir/perlite mixture was greater. The comparison between experimental water retention curves and predictions using Brooks-Corey and van Genuchten models showed a high correlation (0.992 ≤ R2 ≤ 1) for both models for all substrates examined. On the other hand, in the case of unsaturated hydraulic conductivity, the comparison showed a relatively good correlation (0.951 ≤ R2 ≤ 0.981) for the van Genuchten-Mualem model for all substrates used except perlite and a significant deviation (0.436 ≤ R2 ≤ 0.872) for the Brooks-Corey model for all substrates used.


2021 ◽  
Author(s):  
Selina Walle ◽  
Thomas Iserloh ◽  
Manuel Seeger

<p>The study deals with the unsaturated hydraulic conductivity of soils within the scope of the Diverfarming-Project, funded by the EU commission (Horizon 2020 grant agreement no 728003). For this reason, the field work took place in the examined vineyard of the Wawerner Jesuitenberg near Kanzem in the Saar-Mosel valley (Rhineland-Palatinate, Germany). The mentioned parameter is one of the most important specific factors of the hydrological cycle to characterize soil hydraulic properties in the unsaturated soil zone. A mini disc infiltrometer was used to measure the conductivity values at different suctions. The purpose of this study is to determine the plausibility of the fundamentals and the analytical expression of the unsaturated conductivity models in a nearly skeletal soil of schist. In this regard, the mathematical expressions of Mualem (1976), van Genuchten (1980) and Zhang (1997) are focused on calculating the unsaturated hydraulic conductivity. The two variables α and n are analysed in order to better compare between literature specifications and the explicit calculated data of the vineyard’s soil. As a result, the various developments of α are similar thus the significant difference is based on the value of n. Nevertheless, in consideration of these frame conditions the models represent a suitable mathematical expression of the unsaturated hydraulic conductivity. Furthermore, a range of parameters affecting this conductivity is analysed, particularly with regard to the applied variable soil and cultivation management under the grapevines in the vineyard. Also, the rock fragment cover and the pore size distribution are taken into account. In this context the soil compaction and modified pore size distribution in the wheel tracks stand out due to salient unsaturated hydraulic conductivities at higher tensions. In particular, the stone cover of the contact surface influence the characteristics of the analysed conductivity. Additionally, the connection of stone cover, management and pore size distribution creates a mixture of affected parameters of the unsaturated hydraulic conductivity.</p><p> </p><p>Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resour. Res, 12, 513–522, https://doi.org/10.1029/WR012i003p00513, 1976.</p><p>Van Genuchten, M.T.: A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils, Soil Sci. Soc. Am. J., 44, 892–898, https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.</p><p>Zhang, R.: Determination of Soil Sorptivity and Hydraulic Conductivity from the Disk Infiltrometer, Soil Sci. Soc. Am. J., 61, 1024–1030, https://doi.org/10.2136/sssaj1997.03615995006100040005x, 1997.</p>


2021 ◽  
Vol 13 (6) ◽  
pp. 3303
Author(s):  
Faisal Hayat ◽  
Mohanned Abdalla ◽  
Muhammad Usman Munir

The rhizosphere is one of the major components in the soil–plant–atmosphere continuum which controls the flow of water from the soil into roots. Plant roots release mucilage in the rhizosphere which is capable of altering the physio-chemical properties of this region. Here, we showed how mucilage impacted on rhizosphere hydraulic properties, using simple experiments. An artificial rhizosphere, treated or not with mucilage, was placed in a soil sample and suction was applied to mimic the negative pressure in plant xylem. The measured water contents and matric potential were coupled with numerical models to estimate the water retention curve and hydraulic conductivity. A slower loss of water was observed in the treated scenario which resulted in an increase in water retention. Moreover, a slightly lower hydraulic conductivity was initially observed in the treated scenario (8.44 × 10−4 cm s−1) compared to the controlled one in saturated soil. Over soil drying, a relatively higher unsaturated hydraulic conductivity was observed. In summary, we demonstrated that mucilage altered the rhizosphere hydraulic properties and enhanced the unsaturated hydraulic conductivity. These findings improve our understanding of how plants capture more water, and postulate that mucilage secretion could be an optimal trait for plant survival during soil drying.


Sign in / Sign up

Export Citation Format

Share Document