scholarly journals Effect of Chia Seed Mucilage on the Rhizosphere Hydraulic Characteristics

2021 ◽  
Vol 13 (6) ◽  
pp. 3303
Author(s):  
Faisal Hayat ◽  
Mohanned Abdalla ◽  
Muhammad Usman Munir

The rhizosphere is one of the major components in the soil–plant–atmosphere continuum which controls the flow of water from the soil into roots. Plant roots release mucilage in the rhizosphere which is capable of altering the physio-chemical properties of this region. Here, we showed how mucilage impacted on rhizosphere hydraulic properties, using simple experiments. An artificial rhizosphere, treated or not with mucilage, was placed in a soil sample and suction was applied to mimic the negative pressure in plant xylem. The measured water contents and matric potential were coupled with numerical models to estimate the water retention curve and hydraulic conductivity. A slower loss of water was observed in the treated scenario which resulted in an increase in water retention. Moreover, a slightly lower hydraulic conductivity was initially observed in the treated scenario (8.44 × 10−4 cm s−1) compared to the controlled one in saturated soil. Over soil drying, a relatively higher unsaturated hydraulic conductivity was observed. In summary, we demonstrated that mucilage altered the rhizosphere hydraulic properties and enhanced the unsaturated hydraulic conductivity. These findings improve our understanding of how plants capture more water, and postulate that mucilage secretion could be an optimal trait for plant survival during soil drying.

HortScience ◽  
2010 ◽  
Vol 45 (7) ◽  
pp. 1106-1112 ◽  
Author(s):  
Paraskevi A. Londra

For effective irrigation and fertilization management, the knowledge of substrate hydraulic properties is essential. In this study, a steady-state laboratory method was used to determine simultaneously the water retention curve, θ(h), and unsaturated hydraulic conductivity as a function of volumetric water content, K(θ), and water pressure head, K(h), of five substrates used widely in horticulture. The substrates examined were pure peat, 75/25 peat/perlite, 50/50 peat/perlite, 50/50 coir/perlite, and pure perlite. The experimental retention curve results showed that in the case of peat and its mixtures with perlite, there is a hysteresis between drying and wetting branches of the retention curve. Whereas in the case of coir/perlite and perlite, the phenomenon of hysteresis was less pronounced. The increase of perlite proportion in the peat/perlite mixtures led to a decrease of total porosity and water-holding capacity and an increase of air space. Study of the K(θ) and K(h) experimental data showed that the hysteresis phenomenon of K(θ) was negligible compared with the K(h) data for all substrates examined. Within a narrow range of water pressure head (0 to –70 cm H2O) that occurs between two successive irrigations, a sharp decrease of the unsaturated hydraulic conductivity was observed. The comparison of the K(θ) experimental data between the peat-based substrate mixtures and the coir-based substrate mixture showed that for water contents lower than 0.40 m3·m−3, the hydraulic conductivity of the 50/50 coir/perlite mixture was greater. The comparison between experimental water retention curves and predictions using Brooks-Corey and van Genuchten models showed a high correlation (0.992 ≤ R2 ≤ 1) for both models for all substrates examined. On the other hand, in the case of unsaturated hydraulic conductivity, the comparison showed a relatively good correlation (0.951 ≤ R2 ≤ 0.981) for the van Genuchten-Mualem model for all substrates used except perlite and a significant deviation (0.436 ≤ R2 ≤ 0.872) for the Brooks-Corey model for all substrates used.


2020 ◽  
Author(s):  
Mirko Castellini ◽  
Simone Di Prima ◽  
Anna Maria Stellacci ◽  
Massimo Iovino ◽  
Vincenzo Bagarello

<p>Testing new experimental procedures to assess the effects of the drops impact on the soil sealing formation is a main topic in soil hydrology.</p><p>In this field investigation, the methodological approach proposed first by Bagarello et al. (2014) was extended to account for a greater soil infiltration surface (i.e., about 3.5 times higher), a higher range and number of heights of water pouring and to evaluate the different impact on soil management. For this purpose, the effects of three water pouring heights (low, L=3 cm; medium, M=100 cm; high, H=200 cm) on both no-tilled (NT) and conventionally tilled (CT) loam soil were investigated by Beerkan infiltration runs and using the BEST-procedure of data analysis to estimate the soil hydraulic properties.</p><p>Final infiltration rate decreased when perturbing runs (i.e., M and H) were carried out as compared with the non-perturbing (L) ones (by a factor of 1.5-3.1 under NT and 3.4-4.4 under CT). Similarly, the water retention scale parameter, h<sub>g</sub>, increased (i.e., higher in absolute terms) by a factor 1.6-1.8 under NT and by a factor 1.7 under CT. Saturated hydraulic conductivity, K<sub>s</sub>, changed significantly as a function of the increase of water pouring height; regardless of the soil management, perturbing runs caused a reduction in soil permeability by a factor 5 or 6. Effects on hydraulic functions (i.e., soil water retention curve and hydraulic conductivity function), obtained with the BEST-Steady algorithm, were also highlighted. For instance, differences in water retention curve at fixed soil pressure head values (i.e., field capacity, FC, and permanent wilting point, PWP) due to perturbing and non-perturbing runs, were estimated as higher under NT (3.8%) than CT (3.4%) for FC, and equal to 2.1% or 1.6% for PWP.</p><p>Main results of this investigation confirm that a recently tilled loamy soil, without vegetation cover, can be less resilient as compared to a no-tilled one, and that tested water pouring heights methodology looks promising to mimic effects of high energy rainfall events and to quantify the soil sealing effects under alternative management of the soil.</p><p><strong>Acknowledgments</strong></p><p>The work was supported by the project “STRATEGA, Sperimentazione e TRAsferimento di TEcniche innovative di aGricoltura conservativA”, funded by Regione Puglia–Dipartimento Agricoltura, Sviluppo Rurale ed Ambientale, CUP: B36J14001230007.</p><p><strong> </strong><strong>References</strong></p><p>Bagarello, V., Castellini, M., Di Prima, S., Iovino, M. 2014. Soil hydraulic properties determined by infiltration experiments and different heights of water pouring. Geoderma, 213, 492–501. https://doi.org/10.1016/j.geoderma.2013.08.032</p>


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 275 ◽  
Author(s):  
Angelo Basile ◽  
Antonello Bonfante ◽  
Antonio Coppola ◽  
Roberto De Mascellis ◽  
Salvatore Falanga Bolognesi ◽  
...  

Soil water balance on a local scale is generally achieved by applying the classical nonlinear Richards equation that requires hydraulic properties, namely, water retention and hydraulic conductivity functions, to be known. Its application in agricultural systems on field or larger scales involves three major problems being solved, related to (i) the assessment of spatial variability of soil hydraulic properties, (ii) accounting for this spatial variability in modelling large-scale soil water flow, and (iii) measuring the effects of such variability on real field variables (e.g., soil water storage, biomass, etc.). To deal with the first issue, soil hydraulic characterization is frequently performed by using the so-called pedotransfer functions (PTFs), whose effectiveness in providing the actual information on spatial variability has been questioned. With regard to the second problem, the variability of hydraulic properties at the field scale has often been dealt with using a relatively simple approach of considering soils in the field as an ensemble of parallel and statistically independent tubes, assuming only vertical flow. This approach in dealing with spatial variability has been popular in the framework of a Monte Carlo technique. As for the last issue, remote sensing seems to be the only viable solution to verify the pattern of variability, going by several modelling outputs which have considered the soil spatial variability. Based on these premises, the goals of this work concerning the issues discussed above are the following: (1) analyzing the sensitivity of a Richards-based model to the measured variability of θ(h) and k(θ) parameters; (2) establishing the predictive capability of PTF in terms of a simple comparison with measured data; and (3) establishing the effectiveness of use of PTF by employing as data quality control an independent and spatially distributed estimation of the Above Ground Biomass (AGB). The study area of approximately 2000 hectares mainly devoted to maize forage cultivation is located in the Po plain (Lodi), in northern Italy. Sample sites throughout the study area were identified for hydropedological analysis (texture, bulk density, organic matter content, and other chemical properties on all the samples, and water retention curve and saturated hydraulic conductivity on a sub-set). Several pedotransfer functions were tested; the PTF‒Vereckeen proved to be the best one to derive hydraulic properties of the entire soil database. The Monte Carlo approach was used to analyze model sensitivity to two measured input parameters: the slope of water retention curve (n) and the saturated hydraulic conductivity (k0). The analysis showed sensitivity of the simulated process to the parameter n being significantly higher than to k0, although the former was much less variable. The PTFs showed a smoothing effect of the output variability, even though they were previously validated on a set of measured data. Interesting positive and significant correlations were found between the n parameter, from measured water retention curves, and the NDVI (Normalized Difference Vegetation Index), when using multi-temporal (2004–2018) high resolution remotely sensed data on maize cultivation. No correlation was detected when the n parameter derived from PTF was used. These results from our case study mainly suggest that: (i) despite the good performance of PTFs calculated via error indexes, their use in the simulation of hydrological processes should be carefully evaluated for real field-scale applications; and (ii) the NDVI index may be used successfully as a proxy to evaluate PTF reliability in the field.


Soil Research ◽  
2015 ◽  
Vol 53 (4) ◽  
pp. 386 ◽  
Author(s):  
C. D. Grant ◽  
P. H. Groenevelt

Water availability to plants growing in coarse-textured soils during a drying cycle relies on the declining abilities of the soil to release water (differential water capacity) and to deliver it to the plant (unsaturated hydraulic conductivity) under varying evaporative demand. In this context, the availability of water can be quantified using the concept of the integral water capacity, IWC, in which the differential water capacity is weighted by means of a restrictive hydraulic function before integrating. We argue here that the diffusivity is an appropriate component of the restrictive hydraulic function, which leads to the employment of the so-called ‘matric flux potential’ (which we propose to re-name as the ‘matric flux transform’). As the starting point to apply the diffusivity function, we choose the inflection point of the water-retention curve drawn on semi-log paper, which, for the Groenevelt–Grant equation, occurs at a matric head, h, of precisely k0 metres. An illustrative example of the procedures is provided for a coarse-textured soil, which reveals that the restrictive function may not be sufficiently restrictive for all cases. We therefore apply an additional weighting coefficient to account for varying sensitivity of different plants to hydraulic restrictions.


2013 ◽  
Vol 44 (2s) ◽  
Author(s):  
Carlo Bibbiani ◽  
Carlo A. Campiotti ◽  
Luca Incrocci ◽  
Alberto Pardossi

The improved iterative method for the simultaneous determination of the hydraulic properties of growing media from One-Step experiment by Bibbiani, is performed and compared with simplified equations by Valiantzas and Londra. Brooks and Corey equation for water retention, and Kozeny power equation for hydraulic conductivity characterized the hydraulic properties of the porous media. The iterative procedure is applied on pure peat, pumice, and their mixes. The One- Step method has been previously optimized: processing the mean cumulative outflow curves recorded versus time, an estimation of diffusivity, and therefore of the hydraulic functions, is derived. Estimated water retention curve is compared with nine experimental data, and with the estimation of the Van Genuchten model, via the RETC code. Bibbiani’s and Van Genuchten’s models overlap except for the “very wet” range near saturation, whereas the Valiantzas and Londra’s procedure didn’t get satisfactory results. In regard to diffusivity, a good similarity between Bibbiani’s and Van Genuchten-Mualem’s curves can be assessed, while Valiantzas and Londra’s procedure generally results in higher values. Due to the lack of estimation of the water retention curve, Valiantzas and Londra’s procedure fails to estimate the hydraulic conductivity function, whereas Bibbiani’s and Van Genuchten-Mualem’s curves match together in most cases.


2006 ◽  
Vol 43 (8) ◽  
pp. 773-787 ◽  
Author(s):  
M Mbonimpa ◽  
M Aubertin ◽  
B Bussière

The water retention curve (WRC) is often used to define the relative hydraulic conductivity, kr, of unsaturated soils. In this paper, the authors propose the use of the modified Kovács (MK) model, developed to predict the WRC using basic geotechnical properties, combined with some existing statistical models to estimate the kr function. The proposed equations are implemented in MATLAB®. After a preliminary validation based on comparisons with existing solutions, predictive results are presented for granular soils. These indicate a relatively good agreement with experimental results from drainage tests taken from the literature. A discussion follows on the advantages and limitations of the proposed approach.Key words: water retention curve, unsaturated hydraulic conductivity, predictive models, granular soils.


2020 ◽  
Vol 195 ◽  
pp. 01004
Author(s):  
Ali Kolahdooz ◽  
Hamed Sadeghi ◽  
Mohammad Mehdi Ahmadi

Dispersive soils, as one of the main categories of problematic soils, can be found in some parts of the earth, such as the eastern-south of Iran, nearby the Gulf of Oman. One of the most important factors enhancing the dispersive potential is the existence of dissolved salts in the soil water. The main objective of this study is to explore the influence of water salinity on the instability of a railway embankment due to rainfall infiltration. In order to achieve this goal, the embankment resting on a dispersive stratum is numerically modeled and subjected to transient infiltration flow. The effect of dispersion is simplified through variations in the soil-water retention curve with salinity. The measured water retention curves revealed that by omitting the natural salinity in the soil-water, the retention capability of the soil decreases; therefore, the unsaturated hydraulic conductivity of the soil stratum will significantly decline. According to the extensive decrease in the hydraulic conductivity of the desalinated materials, the rainfall cannot infiltrate in the embankment and the rainfall mostly runs off. However, in the saline embankment, the infiltration decreases the soil suction; and consequently, the factor of safety of the railway embankment decreases.


Sign in / Sign up

Export Citation Format

Share Document