Structural behaviour of reinforced concrete beams containing crumb rubber and steel fibres

2017 ◽  
Vol 69 (18) ◽  
pp. 939-953 ◽  
Author(s):  
Mohamed K. Ismail ◽  
Assem A. A. Hassan ◽  
Amgad A. Hussein
2019 ◽  
Vol 181 ◽  
pp. 387-396 ◽  
Author(s):  
Zahran Al-Kamyani ◽  
Maurizio Guadagnini ◽  
Kypros Pilakoutas

2021 ◽  
Vol 15 (1) ◽  
pp. 81-92
Author(s):  
Constantinos B. Demakos ◽  
Constantinos C. Repapis ◽  
Dimitros P. Drivas

Aims: The aim of this paper is to investigate the influence of the volume fraction of fibres, the depth of the beam and the shear span-to-depth ratio on the shear strength of steel fibre reinforced concrete beams. Background: Concrete is a material widely used in structures, as it has high compressive strength and stiffness with low cost manufacturing. However, it presents low tensile strength and ductility. Therefore, through years various materials have been embedded inside it to improve its properties, one of which is steel fibres. Steel fibre reinforced concrete presents improved flexural, tensile, shear and torsional strength and post-cracking ductility. Objective: A better understanding of the shear performance of SFRC could lead to improved behaviour and higher safety of structures subject to high shear forces. Therefore, the influence of steel fibres on shear strength of reinforced concrete beams without transverse reinforcement is experimentally investigated. Methods: Eighteen concrete beams were constructed for this purpose and tested under monotonic four-point bending, six of which were made of plain concrete and twelve of SFRC. Two different aspect ratios of beams, steel fibres volume fractions and shear span-to-depth ratios were selected. Results: During the experimental tests, the ultimate loading, deformation at the mid-span, propagation of cracks and failure mode were detected. From the tests, it was shown that SFRC beams with high volume fractions of fibres exhibited an increased shear capacity. Conclusion: The addition of steel fibres resulted in a slight increase of the compressive strength and a significant increase in the tensile strength of concrete and shear resistance capacity of the beam. Moreover, these beams exhibit a more ductile behaviour. Empirical relations predicting the shear strength capacity of fibre reinforced concrete beams were revised and applied successfully to verify the experimental results obtained in this study.


1999 ◽  
Vol 13 (4) ◽  
pp. 187-193 ◽  
Author(s):  
Charles K. Kankam ◽  
Brigitte Odum-Ewuakye

2018 ◽  
Vol 163 ◽  
pp. 02003 ◽  
Author(s):  
Julita Krassowska ◽  
Marta Kosior-Kazberuk

Experimental tests were carried out to assess the failure model of steel fiber reinforced concrete beams. Experimental research was focused on observing changes in the behavior of the tested elements depending on the amount of shear reinforcement and the fiber. Model two-span beams with a cross-section of 80x180 mm and a length of 2000 mm were tested. The beams had varied stirrup spacing. The following amounts of steel fibres in concrete were used: 78.5 kg/m3 (1.0%) i 118 kg/m3 (1.5%). Concrete beams without fibres were examined at the same time. The beams were loaded in a five-point bending test until they were destroyed. Shear or bending capacity of the element was observed. Fibre reinforced concrete beams were not destroyed rapidly, but they kept their shape consistent under load. Larger number of diagonal cracks with a smaller width were observed in fibre reinforced concrete beams. Failure of concrete beams without fibres was rapid, with a characteristic brittle cracking. Steel fibres revealed the ability to transfer significant shear stress after cracking in comparison to plain concrete.


2020 ◽  
Vol 244 ◽  
pp. 112309 ◽  
Author(s):  
Tidarut Jirawattanasomkul ◽  
Suched Likitlersuang ◽  
Nattamet Wuttiwannasak ◽  
Tamon Ueda ◽  
Dawei Zhang ◽  
...  

1998 ◽  
Vol 50 (4) ◽  
pp. 283-291 ◽  
Author(s):  
B. H. Oh ◽  
D. H. Lim ◽  
S. W. Yoo ◽  
E. S. Kim

Sign in / Sign up

Export Citation Format

Share Document