AN AC IMPEDENCE SPECTROSCOPY STUDY OF FREEZING PHENOMENA IN WOLLASTONITE MICRO-FIBRE REINFORCED CEMENT PASTE

Author(s):  
T Sato ◽  
J J Beaudoin
2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Yury Barabanshchikov ◽  
Ilya Gutskalov

The research object of the paper is cement paste with the particulate reinforcement of basalt fiber. Regardless of fibers’ length at the same fiber cement mix workability and cement consumption equality compressive solidity of the specimens is reduced with increasing fiber content. This is due to the necessity to increase the water-cement ratio to obtain a given workability. The flexural stability of the specimens with increasing fiber content increments in the same conditions. There is an optimum value of the fibers’ dosage. That is why stability has a maximum when crooking. The basaltic fiber particulate reinforcement usage can abruptly increase the cement paste level limiting extensibility, which is extremely important in terms of crack resistance.


2000 ◽  
Vol 15 (12) ◽  
pp. 2844-2848 ◽  
Author(s):  
Sihai Wen ◽  
D. D. L. Chung

Cement pastes containing short steel fibers, which contribute to electron conduction, exhibit positive values (up to 68 μV/°C) of the absolute thermoelectric power. Cement pastes containing short carbon fibers, which contribute to hole conduction while the cement matrix contributes to electron conduction, exhibit negative or slightly positive values of the absolute thermoelectric power. The hole and electron contributions in carbon fiber reinforced cement paste are equal at the percolation threshold. Addition of either steel or carbon fibers to cement paste yields more reversibility and linearity in the variation of the Seebeck voltage with temperature difference (up to 65 °C).


Author(s):  
Mohamad Hanafi ◽  
Ertug Aydin ◽  
Abdullah Ekinci

Extinction of natural resources builds up pressure on governments to invest in research to find more sustainable resources for construction sector. Earlier studies on mortar and concrete show that bottom ash and basalt fiber are independently alternative binder in the concrete sector. This study aims to use bottom ash and basalt fiber blends as alternative novel-based composites in pure cement paste. Strength and durability properties of two different percentages of bottom ash (40% and 50%) and three volume fractions of basalt fiber (0.3%, 0.75%, and 1.5%) were used at three curing periods (7, 28, and 56 days). In order to measure physical properties of the basalt-reinforced bottom ash cement paste composites flowability, dry unit weight, porosity and water absorption measurements at 7, 28, and 56 days of curing were performed. Furthermore, mechanical properties of composites determined by unconfined compressive strength and flexural strength tests. Finally, to assess the durability sulfate-resistance and seawater-resistance tests have been performed on composites at 28 and 56 days of curing. Results showed that addition of basalt fiber improves physical, mechanical and chemical stability properties of paste up to a limiting basalt fiber addition (0.3% volume fraction) where above an adverse effect have been monitored. It is clear that observed results can lead to development of sustainability strategies in the concrete industry by utilizing bottom ash and basalt fiber as an alternative binder.


1985 ◽  
Vol 15 (2) ◽  
pp. 331-342 ◽  
Author(s):  
Arnon Bentur ◽  
Sidney Diamond ◽  
Sidney Mindess

Sign in / Sign up

Export Citation Format

Share Document