scholarly journals Regulatory T Cells and T Cell Depletion: Role of Immunosuppressive Drugs

2007 ◽  
Vol 18 (3) ◽  
pp. 1007-1018 ◽  
Author(s):  
Marina Noris ◽  
Federica Casiraghi ◽  
Marta Todeschini ◽  
Paolo Cravedi ◽  
Daniela Cugini ◽  
...  
PLoS ONE ◽  
2010 ◽  
Vol 5 (5) ◽  
pp. e10788 ◽  
Author(s):  
Alessandra Bandera ◽  
Giulio Ferrario ◽  
Marina Saresella ◽  
Ivana Marventano ◽  
Alessandro Soria ◽  
...  

Endocrinology ◽  
2006 ◽  
Vol 147 (5) ◽  
pp. 2417-2422 ◽  
Author(s):  
Ohki Saitoh ◽  
Yuji Nagayama

Graves’ hyperthyroidism can be efficiently induced in susceptible mouse strains by repeated immunization with recombinant adenovirus coding the TSH receptor (TSHR). This study was designed to evaluate the role(s) played by naturally occurring CD4+CD25+ regulatory T cells in the development of Graves’ hyperthyroidism in resistant C57BL/6 and susceptible BALB/c mice. Depletion of CD4+CD25+ T cells rendered some C57BL/6 mice susceptible to induction of hyperthyroidism. Thus, hyperthyroidism developed in 30% of the CD4+CD25+ T cell-depleted C57BL/6 mice immunized with adenovirus expressing the TSHR A-subunit (AdTSHR289) vs. 0% of those immunized with AdTSHR289 alone. This immunological manipulation also enhanced disease severity in susceptible BALB/c mice, as reflected by a significant increase in mean T4 levels by CD4+CD25+ T cell depletion. The immunoenhancing effect of CD4+CD25+ T cell depletion appears to be attributable to an increase in thyroid-stimulating antibody production and/or a decrease in thyroid-blocking antibody synthesis, but not immune deviation to either T helper 1 or 2 cells. Interestingly, unlike BALB/c mice, some hyperthyroid C57BL/6 mice showed some intrathyroidal lymphocytic infiltration with follicular destruction. These results indicate that CD4+CD25+ T cells play a role in disease susceptibility and severity in adenovirus-TSHR-induced Graves’ hyperthyroidism. Overall, the imbalance between effector and regulatory T cells appears to be crucial in the pathogenesis of Graves’ disease.


2005 ◽  
Vol 127 (2) ◽  
pp. 123-130 ◽  
Author(s):  
Hiroshi Sato ◽  
Kazue Ozawa ◽  
Shingo Iwata ◽  
Satoshi Kaihara ◽  
Yasuhiro Ogura ◽  
...  

2011 ◽  
Vol 92 (5) ◽  
pp. 523-528 ◽  
Author(s):  
Kathleen S. Neff ◽  
Susan M. Richards ◽  
John M. Williams ◽  
Richard D. Garman ◽  
Melanie C. Ruzek

Author(s):  
Tyler G. Normile ◽  
Antonella Rella ◽  
Maurizio Del Poeta

Cryptococcus neoformans is a fungal pathogen causing life-threatening meningoencephalitis in susceptible individuals. Fungal vaccine development has been hampered by the fact that cryptococcosis occurs during immunodeficiency. We previously reported that a C. neoformans mutant (Δsgl1) accumulating sterylglucosides (SGs) is avirulent and provides complete protection to WT challenge, even under CD4+ T cell depletion, an immunodeficient condition commonly associated with cryptococcosis. We found high levels of SGs in the lungs post-immunization with Δsgl1 that decreased upon fungal clearance. Th1 cytokines increased whereas Th2 cytokines concurrently decreased, coinciding with a large recruitment of leukocytes to the lungs. Depletion of B or CD8+ T cells did not affect either Δsgl1 clearance or protection from WT challenge. Although CD4+ T cell depletion affected clearance, mice were still protected indicating that clearance of the mutant was not necessary for host protection. Protection was lost only when both CD4+ and CD8+ T cells were depleted, highlighting a previously unexplored role of fungal-derived SGs as an immunoadjuvant for host protection against cryptococcosis.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Mark Engel ◽  
Tom Sidwell ◽  
Ajithkumar Vasanthakumar ◽  
George Grigoriadis ◽  
Ashish Banerjee

Regulatory T cells (Tregs) are a subset of CD4 T cells that are key mediators of immune tolerance. Most Tregs develop in the thymus. In this review we summarise recent findings on the role of diverse signalling pathways and downstream transcription factors in thymic Treg development.


Blood ◽  
1985 ◽  
Vol 65 (3) ◽  
pp. 663-679
Author(s):  
L Levitt ◽  
TJ Kipps ◽  
EG Engleman ◽  
PL Greenberg

The efficacy of four separate methods of human bone marrow T lymphocyte depletion was assessed, and the effect of T cells and monocytes on in vitro growth of marrow (CFU-GEMM, BFU-E, and CFU-GM) and peripheral blood (BFU-E) hematopoietic progenitors was determined. Extent of T cell depletion was assessed by multiparameter fluorescent cell sorter (FACS) analysis and by functional studies. Cells staining positively by FACS analysis for one or more of three separate fluorescent pan-T cell monoclonal antibodies (MCAbs) comprised 8.4% to 9.5% of control marrow mononuclear cells (MNCs). T cells constituted 3.2% to 5.1% of marrow following single, sequential, or combination treatment with two different pan-T cell MCAbs (Leu 1 and TM1) plus complement, 1.5% to 2.2% of marrow following solid-phase immunoabsorption (“panning”), 0.2% of marrow after sheep cell rosetting, and only 0.05% of marrow after FACS selective cell sorting and gated separation. T cells made up 59% to 73% of control peripheral blood MNCs and 0.8% to 2.8% of peripheral MNCs following sheep cell rosetting plus treatment with Leu 1 MCAb and complement. Mitogen (PHA, Con A) and allogeneic MLC-induced blastogenic responses (stimulation indices, experimental/control or E/C) revealed a concordant decrement in marrow T cell function after MCAb plus complement (E/C of 3.9 to 9.0), after panning (E/C of 1.6 to 3.5) and after sheep cell rosetting (E/C of 0.7 to 1.3), compared with control marrow (E/C of 5.3 to 15.7). After T cell depletion, marrow BFU-E growth was 95% to 120% of control, CFU-GM growth was 90% to 108% of control, and CFU-GEMM growth was 89% to 111% of control. Marrow T cell and/or monocyte depletion did not alter erythropoietin-dependent BFU-E growth in the absence of Mo-conditioned medium (81% to 95% of control), and the addition of as many as 50 to 100 X 10(3) purified marrow monocytes or T cells to 10(5) autologous nonadherent T cell-depleted marrow target cells had a negligible (P greater than .1) effect on marrow BFU-E growth in vitro. Peripheral blood (PB) BFU-E/10(5) T- depleted target cells were 106% +/- 19% of expected; PB BFU-E growth was significantly diminished after monocyte depletion alone (7% +/- 6% of expected) or after monocyte plus T cell depletion (8% +/- 4% of expected).(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document