susceptible mouse
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 11)

H-INDEX

27
(FIVE YEARS 2)

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Angela Zhang ◽  
Megumi Matsushita ◽  
Liang Zhang ◽  
Hao Wang ◽  
Xiaojian Shi ◽  
...  

AbstractThe human Apolipoprotein E4 (ApoE4) variant is the strongest known genetic risk factor for Alzheimer’s disease (AD). Cadmium (Cd) has been shown to impair learning and memory at a greater extent in humanized ApoE4 knock-in (ApoE4-KI) mice as compared to ApoE3 (common allele)-KI mice. Here, we determined how cadmium interacts with ApoE4 gene variants to modify the gut-liver axis. Large intestinal content bacterial 16S rDNA sequencing, serum lipid metabolomics, and hepatic transcriptomics were analyzed in ApoE3- and ApoE4-KI mice orally exposed to vehicle, a low dose, or a high dose of Cd in drinking water. ApoE4-KI males had the most prominent changes in their gut microbiota, as well as a predicted down-regulation of many essential microbial pathways involved in nutrient and energy homeostasis. In the host liver, cadmium-exposed ApoE4-KI males had the most differentially regulated pathways; specifically, there was enrichment in several pathways involved in platelet activation and drug metabolism. In conclusion, Cd exposure profoundly modified the gut-liver axis in the most susceptible mouse strain to neurological damage namely the ApoE4-KI males, evidenced by an increase in microbial AD biomarkers, reduction in energy supply-related pathways in gut and blood, and an increase in hepatic pathways involved in inflammation and xenobiotic biotransformation.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ana C. Ayupe ◽  
Felipe Beckedorff ◽  
Konstantin Levay ◽  
Benito Yon ◽  
Yadira Salgueiro ◽  
...  

Abstract Background Emerging evidence indicates that long noncoding RNAs (lncRNAs) are important regulators of various biological processes, and their expression can be altered following certain pathological conditions, including central nervous system injury. Retinal ganglion cells (RGCs), whose axons form the optic nerve, are a heterogeneous population of neurons with more than 40 molecularly distinct subtypes in mouse. While most RGCs, including the ON-OFF direction-selective RGCs (ooDSGCs), are vulnerable to axonal injury, a small population of RGCs, including the intrinsically photosensitive RGCs (ipRGCs), are more resilient. Results By performing systematic analyses on RNA-sequencing data, here we identify lncRNAs that are expressed in ooDSGCs and ipRGCs with and without axonal injury. Our results reveal a repertoire of different classes of lncRNAs, including long intergenic noncoding RNAs and antisense ncRNAs that are differentially expressed between these RGC types. Strikingly, we also found dozens of lncRNAs whose expressions are altered markedly in response to axonal injury, some of which are expressed exclusively in either one of the types. Moreover, analyses into these lncRNAs unraveled their neighboring coding genes, many of which encode transcription factors and signaling molecules, suggesting that these lncRNAs may act in cis to regulate important biological processes in these neurons. Lastly, guilt-by-association analysis showed that lncRNAs are correlated with apoptosis associated genes, suggesting potential roles for these lncRNAs in RGC survival. Conclusions Overall, the results of this study reveal RGC type-specific expression of lncRNAs and provide a foundation for future investigation of the function of lncRNAs in regulating neuronal type specification and survival.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Nico Andreas ◽  
Sylvia Müller ◽  
Nicole Templin ◽  
Paul M. Jordan ◽  
Harald Schuhwerk ◽  
...  

Abstract Background The incidence of rheumatoid arthritis is correlated with age. In this study, we analyzed the association of the incidence and severity of glucose-6-phosphate isomerase (G6PI)-induced arthritis with age in two different mouse strains. Methods Young and very old mice from two different arthritis-susceptible wild-type mouse strains were analyzed after a single subcutaneous injection of G6PI s.c. The metabolism and the function of synoviocytes were analyzed in vitro, the production of bioactive lipid mediators by myeloid cells and synoviocytes was assessed in vitro and ex vivo by UPLC-MS-MS, and flow cytometry was used to verify age-related changes of immune cell composition and function. Results While the severity of arthritis was independent from age, the onset was delayed in old mice. Old mice showed common signs of immune aging like thymic atrophy associated with decreased CD4+ effector T cell numbers. Despite its decrease, the effector T helper (Th) cell compartment in old mice was reactive and functionally intact, and their Tregs exhibited unaltered suppressive capacities. In homeostasis, macrophages and synoviocytes from old mice produced higher amounts of pro-inflammatory cyclooxygenase (COX)-derived products. However, this functional difference did not remain upon challenge in vitro nor upon arthritis reactions ex vivo. Conclusion While old mice show a higher baseline of inflammatory functions, this does not result in increased reaction towards self-antigens in arthritis-susceptible mouse strains. Together, our data from two different mouse strains show that the susceptibility for G6PI-induced arthritis is not age-dependent.


Author(s):  
Laura Adalid-Peralta ◽  
Alexander Lopez-Roblero ◽  
Cynthia Camacho-Vázquez ◽  
Marisol Nájera-Ocampo ◽  
Adrián Guevara-Salinas ◽  
...  

Murine cysticercosis by Taenia crassiceps is a model for human neurocysticercosis. Genetic and/or immune differences may underlie the higher susceptibility to infection in BALB/cAnN with respect to C57BL/6 mice. T regulatory cells (Tregs) could mediate the escape of T. crassiceps from the host immunity. This study is aimed to investigate the role of Tregs in T. crassiceps establishment in susceptible and non-susceptible mouse strains. Treg and effector cells were quantified in lymphoid organs before infection and 5, 30, 90, and 130 days post-infection. The proliferative response post-infection was characterized in vitro. The expression of regulatory and inflammatory molecules was assessed on days 5 and 30 post-infection. Depletion assays were performed to assess Treg functionality. Significantly higher Treg percentages were observed in BALB/cAnN mice, while increased percentages of activated CD127+ cells were found in C57BL/6 mice. The proliferative response was suppressed in susceptible mice, and Treg proliferation occurred only in susceptible mice. Treg-mediated suppression mechanisms may include IL-10 and TGFβ secretion, granzyme- and perforin-mediated cytolysis, metabolic disruption, and cell-to-cell contact. Tregs are functional in BALB/cAnN mice. Therefore Tregs could be allowing parasite establishment and survival in susceptible mice but could play a homeostatic role in non-susceptible strains.


2020 ◽  
Vol 6 (4) ◽  
pp. 311
Author(s):  
Calliandra M. de-Souza-Silva ◽  
Fabián Andrés Hurtado ◽  
Aldo Henrique Tavares ◽  
Getúlio P. de Oliveira ◽  
Taina Raiol ◽  
...  

Most people infected with the fungus Paracoccidioides spp. do not get sick, but approximately 5% develop paracoccidioidomycosis. Understanding how host immunity determinants influence disease development could lead to novel preventative or therapeutic strategies; hence, we used two mouse strains that are resistant (A/J) or susceptible (B10.A) to P. brasiliensis to study how dendritic cells (DCs) respond to the infection. RNA sequencing analysis showed that the susceptible strain DCs remodeled their transcriptomes much more intensely than those from the resistant strain, agreeing with a previous model of more intense innate immunity response in the susceptible strain. Contrastingly, these cells also repress genes/processes involved in antigen processing and presentation, such as lysosomal activity and autophagy. After the interaction with P. brasiliensis, both DCs and macrophages from the susceptible mouse reduced the autophagy marker LC3-II recruitment to the fungal phagosome compared to the resistant strain cells, confirming this pathway’s repression. These results suggest that impairment in antigen processing and presentation processes might be partially responsible for the inefficient activation of the adaptive immune response in this model.


2020 ◽  
Vol 21 (12) ◽  
pp. 4372
Author(s):  
Agnieszka Gunia-Krzyżak ◽  
Ewa Żesławska ◽  
Karolina Słoczyńska ◽  
Dorota Żelaszczyk ◽  
Aleksandra Sowa ◽  
...  

Epilepsy is one of the most frequent neurological disorders affecting about 1% of the world’s human population. Despite availability of multiple treatment options including antiseizure drugs, it is estimated that about 30% of seizures still remain resistant to pharmacotherapy. Searching for new antiseizure and antiepileptic agents constitutes an important issue within modern medicinal chemistry. Cinnamamide derivatives were identified in preclinical as well as clinical studies as important drug candidates for the treatment of epilepsy. The cinnamamide derivative presented here: S(+)-(2E)-N-(2-hydroxypropyl)-3-phenylprop-2-enamide (S(+)-N-(2-hydroxypropyl)cinnamamide, compound KM-568) showed anticonvulsant activity in several models of epilepsy and seizures in mice and rats. It was active in a genetic animal model of epilepsy (Frings audiogenic seizure-susceptible mouse model, ED50 = 13.21 mg/kg, i.p.), acute seizures induced electrically (maximal electroshock test ED50 = 44.46 mg/kg mice i.p., ED50 = 86.6 mg/kg mice p.o., ED50 = 27.58 mg/kg rats i.p., ED50 = 30.81 mg/kg rats p.o., 6-Hz psychomotor seizure model 32 mA ED50 = 71.55 mg/kg mice i.p., 44 mA ED50 = 114.4 mg/kg mice i.p.), chronic seizures induced electrically (corneal kindled mouse model ED50 = 79.17 mg/kg i.p., hippocampal kindled rat model ED50 = 24.21 mg/kg i.p., lamotrigine-resistant amygdala kindled seizure model in rats ED50 = 58.59 mg/kg i.p.), acute seizures induced chemically (subcutaneous metrazol seizure threshold test ED50 = 104.29 mg/kg mice i.p., ED50 = 107.27 mg/kg mice p.o., ED50 = 41.72 mg/kg rats i.p., seizures induced by picrotoxin in mice ED50 = 94.11 mg/kg i.p.) and the pilocarpine-induced status epilepticus model in rats (ED50 = 279.45 mg/kg i.p., ED97 = 498.2 mg/kg i.p.). The chemical structure of the compound including configuration of the chiral center was confirmed by NMR spectroscopy, LC/MS spectroscopy, elemental analysis, and crystallography. Compound KM-568 was identified as a moderately stable derivative in an in vitro mouse liver microsome system. According to the Ames microplate format mutagenicity assay performed, KM-568 was not a base substitution or frameshift mutagen. Cytotoxicity evaluation in two cell lines (HepG2 and H9c2) proved the safety of the compound in concentrations up to 100 µM. Based on the results of anticonvulsant activity and safety profile, S(+)-(2E)-N-(2-hydroxypropyl)-3-phenylprop-2-enamide could be proposed as a new lead compound for further preclinical studies on novel treatment options for epilepsy.


2019 ◽  
Author(s):  
Caylin G. Winchell ◽  
Bibhuti B. Mishra ◽  
Jia Yao Phuah ◽  
Mohd Saqib ◽  
Samantha J. Nelson ◽  
...  

AbstractIn 2017 over 550,000 estimated new cases of multi-drug/rifampicin resistant tuberculosis (MDR/RR-TB) occurred, emphasizing a need for new treatment strategies. Linezolid (LZD) is a potent antibiotic for drug-resistant Gram-positive infections and is an effective treatment for TB. However, extended LZD use can lead to LZD-associated host toxicities, most commonly bone marrow suppression. LZD toxicities may be mediated by IL-1, an inflammatory pathway important for early immunity during M. tuberculosis infection. However, IL-1 can contribute to pathology and disease severity late in TB progression. Since IL-1 may contribute to LZD toxicity and does influence TB pathology, we targeted this pathway with a potential host-directed therapy (HDT). We hypothesized LZD efficacy could be enhanced by modulation of IL-1 pathway to reduce bone marrow toxicity and TB associated-inflammation. We used two animal models of TB to test our hypothesis, a TB-susceptible mouse model and clinically relevant cynomolgus macaques. Antagonizing IL-1 in mice with established infection reduced lung neutrophil numbers and partially restored the erythroid progenitor populations that are depleted by LZD. In macaques, we found no conclusive evidence of bone marrow suppression associated with LZD, indicating our treatment time may have been short enough to avoid the toxicities observed in humans. Though treatment was only 4 weeks (the FDA approved regimen at the time of study), we observed sterilization of the majority of granulomas regardless of co-administration of the FDA-approved IL-1 receptor antagonist (IL-1Rn), also known as Anakinra. However total lung inflammation was significantly reduced in macaques treated with IL-1Rn and LZD compared to LZD alone. Importantly, IL-1Rn administration did not impair the host response against Mtb or LZD efficacy in either animal model. Together, our data support that inhibition of IL-1 in combination with LZD has potential to be an effective HDT for TB and the need for further research in this area.


Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1450 ◽  
Author(s):  
Rosa M. Pascale ◽  
Maria M. Simile ◽  
Graziella Peitta ◽  
Maria A. Seddaiu ◽  
Francesco Feo ◽  
...  

Hepatocellular carcinoma (HCC) is a frequent human cancer and the most frequent liver tumor. The study of genetic mechanisms of the inherited predisposition to HCC, implicating gene–gene and gene–environment interaction, led to the discovery of multiple gene loci regulating the growth and multiplicity of liver preneoplastic and neoplastic lesions, thus uncovering the action of multiple genes and epistatic interactions in the regulation of the individual susceptibility to HCC. The comparative evaluation of the molecular pathways involved in HCC development in mouse and rat strains differently predisposed to HCC indicates that the genes responsible for HCC susceptibility control the amplification and/or overexpression of c-Myc, the expression of cell cycle regulatory genes, and the activity of Ras/Erk, AKT/mTOR, and of the pro-apoptotic Rassf1A/Nore1A and Dab2IP/Ask1 pathways, the methionine cycle, and DNA repair pathways in mice and rats. Comparative functional genetic studies, in rats and mice differently susceptible to HCC, showed that preneoplastic and neoplastic lesions of resistant mouse and rat strains cluster with human HCC with better prognosis, while the lesions of susceptible mouse and rats cluster with HCC with poorer prognosis, confirming the validity of the studies on the influence of the genetic predisposition to hepatocarinogenesis on HCC prognosis in mouse and rat models. Recently, the hydrodynamic gene transfection in mice provided new opportunities for the recognition of genes implicated in the molecular mechanisms involved in HCC pathogenesis and prognosis. This method appears to be highly promising to further study the genetic background of the predisposition to this cancer.


Sign in / Sign up

Export Citation Format

Share Document