Three-Dimensional Visualization of the Podocyte Actin Network Using Integrated Membrane Extraction, Electron Microscopy, and Machine Learning

2021 ◽  
pp. ASN.2021020182
Author(s):  
Chengqing Qu ◽  
Robyn Roth ◽  
Pongpratch Puapatanakul ◽  
Charles Loitman ◽  
Dina Hammad ◽  
...  

Background Actin stress fibers are abundant in cultured cells, but little is known about them in vivo. In podocytes, much evidence suggests that mechanobiologic mechanisms underlie podocyte shape and adhesion in health and in injury, with structural changes to actin stress fibers potentially responsible for pathologic changes to cell morphology. However, this hypothesis is difficult to rigorously test in vivo due to challenges with visualization. A technology to image the actin cytoskeleton at high resolution is needed to better understand the role of structures such as actin stress fibers in podocytes. Methods We developed the first visualization technique capable of resolving the three-dimensional cytoskeletal network in mouse podocytes in detail while definitively identifying the proteins that comprise this network. This technique integrates membrane extraction, focused ion beam scanning electron microscopy, and machine learning image segmentation. Results Using isolated mouse glomeruli from healthy animals, we observed actin cables and intermediate filaments linking the interdigitated podocyte foot processes to newly described contractile actin structures located at the periphery of the podocyte cell body. Actin cables within foot processes formed a continuous, mesh-like, electron-dense sheet that incorporated the slit diaphragms. Conclusions Our new technique revealed, for the first time, the detailed three-dimensional organization of actin networks in healthy podocytes. In addition to being consistent with the gel compression hypothesis, which posits that foot processes connected by slit diaphragms act together to counterbalance the hydrodynamic forces across the glomerular filtration barrier, our data provide insight into how podocytes respond to mechanical cues from their surrounding environment.

2021 ◽  
Author(s):  
Chengqing Qu ◽  
Robyn Roth ◽  
Charles Loitman ◽  
Dina Hammad ◽  
Guy M. Genin ◽  
...  

AbstractAlthough actin stress fibers are abundant in cultured cells, little is known about these structures in vivo. In podocytes of the kidney glomerulus, much evidence suggests that mechanobiological mechanisms underlie injury, with changes to actin stress fiber structures potentially responsible for pathological changes to cell morphology. However, this hypothesis is difficult to rigorously test in vivo due to challenges with visualization. We therefore developed the first visualization technique capable of resolving the three-dimensional (3D) podocyte actin network with unprecedented detail in healthy and injured podocytes, and applied this technique to reveal the changes in the actin network that occur upon podocyte injury. Using isolated glomeruli from healthy mice as well as from three different mouse injury models (Cd2ap-/-, Lamb2-/- and the Col4a3-/- model of Alport syndrome), we applied our novel imaging technique that integrates membrane-extraction, focused ion bean scanning electron microscopy (FIB-SEM), and deep learning image segmentation. In healthy glomeruli, we observed actin cables that link the interdigitating podocyte foot processes to newly described actin structures located at the periphery of the cell body. The actin cables within the foot processes formed a continuous, mesh-like, electron dense sheet that incorporated the slit diaphragms required for kidney filtration. After injury, the actin network was markedly different, having lost its organization and presenting instead as a disorganized assemblage of actin condensates juxtaposed to the glomerular basement membrane. The new visualization method enabled us, for the first time, to observe the detailed 3D organization of actin networks in both healthy and injured podocytes. Shared features of actin condensations across all three injury models further suggested common mechanobiological pathways that govern changes to podocyte morphology after injury.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexey A. Polilov ◽  
Anastasia A. Makarova ◽  
Song Pang ◽  
C. Shan Xu ◽  
Harald Hess

AbstractModern morphological and structural studies are coming to a new level by incorporating the latest methods of three-dimensional electron microscopy (3D-EM). One of the key problems for the wide usage of these methods is posed by difficulties with sample preparation, since the methods work poorly with heterogeneous (consisting of tissues different in structure and in chemical composition) samples and require expensive equipment and usually much time. We have developed a simple protocol allows preparing heterogeneous biological samples suitable for 3D-EM in a laboratory that has a standard supply of equipment and reagents for electron microscopy. This protocol, combined with focused ion-beam scanning electron microscopy, makes it possible to study 3D ultrastructure of complex biological samples, e.g., whole insect heads, over their entire volume at the cellular and subcellular levels. The protocol provides new opportunities for many areas of study, including connectomics.


2007 ◽  
Vol 15 (2) ◽  
pp. 26-31 ◽  
Author(s):  
Ben Lich

DualBeam instruments that combine the imaging capability of scanning electron microscopy (SEM) with the cutting and deposition capability of a focused ion beam (FIB) provide biologists with a powerful tool for investigating three-dimensional structure with nanoscale (1 nm-100 nm) resolution. Ever since Van Leeuwenhoek used the first microscope to describe bacteria more than 300 years ago, microscopy has played a central role in scientists' efforts to understand biological systems. Light microscopy is generally limited to a useful resolution of about a micrometer. More recently the use of confocal and electron microscopy has enabled investigations at higher resolution. Used with fluorescent markers, confocal microscopy can detect and localize molecular scale features, but its imaging resolution is still limited. SEM is capable of nanometer resolution, but is limited to the near surface region of the sample.


PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e57405 ◽  
Author(s):  
Bohumil Maco ◽  
Anthony Holtmaat ◽  
Marco Cantoni ◽  
Anna Kreshuk ◽  
Christoph N. Straehle ◽  
...  

Contact ◽  
2018 ◽  
Vol 1 ◽  
pp. 251525641880142
Author(s):  
Manon Rosselin ◽  
Paula Nunes-Hasler ◽  
Nicolas Demaurex

Mitochondria undergo spontaneous transient elevations in matrix pH associated with drops in mitochondrial membrane potential. These mitopHlashes require a functional respiratory chain and the profusion protein optic atrophy 1, but their mechanistic basis is unclear. To gain insight on the origin of these dynamic events, we resolved the ultrastructure of flashing mitochondria by correlative light and electron microscopy. HeLa cells expressing the matrix-targeted pH probe mitoSypHer were screened for mitopHlashes and fixed immediately after the occurrence of a flashing event. The cells were then processed for imaging by serial block face scanning electron microscopy using a focused ion beam to generate ∼1,200 slices of 10 nm thickness from a 28 µm × 15 µm cellular volume. Correlation of live/fixed fluorescence and electron microscopy images allowed the unambiguous identification of flashing and nonflashing mitochondria. Three-dimensional reconstruction and surface mapping revealed that each tomogram contained two flashing mitochondria of unequal sizes, one being much larger than the average mitochondrial volume. Flashing mitochondria were 10-fold larger than silent mitochondria but with a surface to volume ratio and a cristae volume similar to nonflashing mitochondria. Flashing mitochondria were connected by tubular structures, formed more membrane contact sites, and a constriction was observed at a junction between a flashing mitochondrion and a nonflashing mitochondrion. These data indicate that flashing mitochondria are structurally preserved and bioenergetically competent but form numerous membrane contact sites and are connected by tubular structures, consistent with our earlier suggestion that mitopHlashes might be triggered by the opening of fusion pores between contiguous mitochondria.


2017 ◽  
Vol 216 (9) ◽  
pp. 2891-2909 ◽  
Author(s):  
Paola Kuri ◽  
Nicole L. Schieber ◽  
Thomas Thumberger ◽  
Joachim Wittbrodt ◽  
Yannick Schwab ◽  
...  

Activated danger or pathogen sensors trigger assembly of the inflammasome adaptor ASC into specks, large signaling platforms considered hallmarks of inflammasome activation. Because a lack of in vivo tools has prevented the study of endogenous ASC dynamics, we generated a live ASC reporter through CRISPR/Cas9 tagging of the endogenous gene in zebrafish. We see strong ASC expression in the skin and other epithelia that act as barriers to insult. A toxic stimulus triggered speck formation and rapid pyroptosis in keratinocytes in vivo. Macrophages engulfed and digested that speck-containing, pyroptotic debris. A three-dimensional, ultrastructural reconstruction, based on correlative light and electron microscopy of the in vivo assembled specks revealed a compact network of highly intercrossed filaments, whereas pyrin domain (PYD) or caspase activation and recruitment domain alone formed filamentous aggregates. The effector caspase is recruited through PYD, whose overexpression induced pyroptosis but only after substantial delay. Therefore, formation of a single, compact speck and rapid cell-death induction in vivo requires a full-length ASC.


2013 ◽  
Vol 19 (6) ◽  
pp. 1535-1541 ◽  
Author(s):  
Alisoun House ◽  
Kevin Balkwill

AbstractPollen grain morphology has been widely used in the classification of the Acanthaceae, where external pollen wall features have proved useful in determining relationships between taxa. Although detailed information has been accumulated using light microscopy, transmission electron microscopy and scanning electron microscopy (SEM) techniques, internal pollen wall features lack investigation and the techniques are cumbersome. A new technique involving precise cross sectioning or slicing of pollen grains at a selected position for examining wall ultrastructure, using a focused ion beam-scanning electron microscope (FIB-SEM), has been explored and promising results have been obtained. The FIB-SEM offers a good technique for reliable, high resolution, three-dimensional (3D) viewing of the internal structure of the pollen grain wall.


Sign in / Sign up

Export Citation Format

Share Document