scholarly journals Parathyroid Hormone-Related Protein (107-139) Stimulates Interleukin-6 Expression in Human Osteoblastic Cells

1999 ◽  
Vol 10 (4) ◽  
pp. 796-803
Author(s):  
FERNANDO DE MIGUEL ◽  
PILAR MARTINEZ-FERNANDEZ ◽  
CARLOS GUILLEN ◽  
ALVARO VALIN ◽  
ANA RODRIGO ◽  
...  

Abstract. The N-terminal region of both parathyroid hormone (PTH) and PTH-related protein (PTHrP) binds to the same PTH/PTHrP receptor in osteoblasts. However, C-terminal PTHrP (107-139) inhibits growth and various functions of osteoblasts and osteoclasts apparently through PTHrP-specific receptors. PTH (1-34) and PTHrP (1-34) rapidly induce interleukin-6 (IL-6) expression by osteoblasts. The aim of the present study was to assess the effects of PTHrP (107-139) on IL-6 gene expression and secretion by osteoblastic cells from human trabecular bone (hOB). Using reverse transcription followed by PCR, it was found that IL-6 mRNA was twofold maximally increased by either PTHrP (1-34) or PTHrP (107-139), at 10 nM, over basal within 1 to 2 h in hOB cells. This effect of PTHrP (107-139), and that of PTHrP (1-34), were abolished by the transcription inhibitor actinomycin D. Meanwhile, puromycin, a protein synthesis inhibitor, superinduced IL-6 expression in the presence or absence of each PTHrP peptide. Both PTHrP (1-34) and PTHrP (107-139), but not PTHrP (38-64), stimulated IL-6 secretion to the hOB cell-conditioned medium at 24 h, dose dependently. In addition, this maximal stimulatory effect (twofold over basal) was similar with each PTHrP peptide alone, and not additive when added together. PTHrP (107-139) stimulation of mRNA and protein in hOB cells was abolished by bisindolylmaleimide I, a protein kinase C inhibitor, but not by either adenosine 3′,5′-cyclic monophosphorothioate, Rp-isomer (Rp-cAMPS), or N-[2-((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H89), two protein kinase A inhibitors. These results indicate that C-terminal PTHrP, like its N-terminal domain, induces IL-6 production by human osteoblastic cells. This effect of both PTHrP regions could provide a mechanism to modulate bone turnover.

2018 ◽  
Vol 7 (1) ◽  
pp. 58-68 ◽  
Author(s):  
S. Portal-Núñez ◽  
J. A. Ardura ◽  
D. Lozano ◽  
I. Martínez de Toda ◽  
M. De la Fuente ◽  
...  

Objectives Oxidative stress plays a major role in the onset and progression of involutional osteoporosis. However, classical antioxidants fail to restore osteoblast function. Interestingly, the bone anabolism of parathyroid hormone (PTH) has been shown to be associated with its ability to counteract oxidative stress in osteoblasts. The PTH counterpart in bone, which is the PTH-related protein (PTHrP), displays osteogenic actions through both its N-terminal PTH-like region and the C-terminal domain. Methods We examined and compared the antioxidant capacity of PTHrP (1-37) with the C-terminal PTHrP domain comprising the 107-111 epitope (osteostatin) in both murine osteoblastic MC3T3-E1 cells and primary human osteoblastic cells. Results We showed that both N- and C-terminal PTHrP peptides at 100 nM decreased reactive oxygen species production and forkhead box protein O activation following hydrogen peroxide (H2O2)-induced oxidation, which was related to decreased lipid oxidative damage and caspase-3 activation in these cells. This was associated with their ability to restore the deleterious effects of H2O2 on cell growth and alkaline phosphatase activity, as well as on the expression of various osteoblast differentiation genes. The addition of Rp-cyclic 3′,5′-hydrogen phosphorothioate adenosine triethylammonium salt (a cyclic 3',5'-adenosine monophosphate antagonist) and calphostin C (a protein kinase C inhibitor), or a PTH type 1 receptor antagonist, abrogated the effects of N-terminal PTHrP, whereas protein phosphatase 1 (an Src kinase activity inhibitor), SU1498 (a vascular endothelial growth factor receptor 2 inhibitor), or an anti osteostatin antiserum, inhibited the effects of C-terminal PTHrP. Conclusion These findings indicate that the antioxidant properties of PTHrP act through its N- and C-terminal domains and provide novel insights into the osteogenic action of PTHrP. Cite this article: S. Portal-Núñez, J. A. Ardura, D. Lozano, I. Martínez de Toda, M. De la Fuente, G. Herrero-Beaumont, R. Largo, P. Esbrit. Parathyroid hormone-related protein exhibits antioxidant features in osteoblastic cells through its N-terminal and osteostatin domains. Bone Joint Res 2018;7:58–68. DOI: 10.1302/2046-3758.71.BJR-2016-0242.R2.


Bone ◽  
1995 ◽  
Vol 16 (3) ◽  
pp. 341-347 ◽  
Author(s):  
H.L. Guenther ◽  
W. Hofstetter ◽  
J.M. Moseley ◽  
M.T. Gillespie ◽  
N. Suda ◽  
...  

2000 ◽  
Vol 7 (6) ◽  
pp. 239-242 ◽  
Author(s):  
Munehisa Ueno ◽  
Shin-Ichi Ban ◽  
Takashi Nakanoma ◽  
Takuji Tsukamoto ◽  
Shoichi Nonaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document