Evidence for the synthesis of parathyroid hormone-related protein (PTHrP) by nontransformed clonal rat osteoblastic cells in vitro

Bone ◽  
1995 ◽  
Vol 16 (3) ◽  
pp. 341-347 ◽  
Author(s):  
H.L. Guenther ◽  
W. Hofstetter ◽  
J.M. Moseley ◽  
M.T. Gillespie ◽  
N. Suda ◽  
...  
1996 ◽  
Vol 13 (5) ◽  
pp. 399-410 ◽  
Author(s):  
H. Okada ◽  
F.L. Schanbacher ◽  
L.K. McCauley ◽  
M.T. Weckmann ◽  
C.C. Capen ◽  
...  

2006 ◽  
Vol 291 (5) ◽  
pp. R1499-R1506 ◽  
Author(s):  
Juan Fuentes ◽  
Joana Figueiredo ◽  
Deborah M. Power ◽  
Adelino V. M. Canário

Parathyroid hormone-related protein (PTHrP) is a factor associated with normal development and physiology of the nervous, cardiovascular, immune, reproductive, and musculoskeletal systems in higher vertebrates. It also stimulates whole body calcium uptake in sea bream ( Sparus auratus) larvae with an estimated 60% coming from intestinal uptake in seawater. The present study investigated the role of PTHrP in the intestinal calcium transport in the sea bream in vitro. Unidirectional mucosal-to-serosal and serosal-to-mucosal 45Ca fluxes were measured in vitro in duodenum, hindgut, and rectum mounted in Ussing chambers. In symmetric conditions with the same saline, bathing apical and basolateral sides of the preparation addition of piscine PTHrP 1–34 (6 nM) to the serosal surface resulted in an increase in mucosal to serosal calcium fluxes in duodenum and hindgut and a reduction in serosal to mucosal in the rectum, indicating that different mechanisms are responsive to PTHrP along the intestine. In control asymmetric conditions, with serosal normal and mucosal bathed with a saline similar in composition to the intestinal fluid, there was a net increase in calcium uptake in all regions. The addition of 6 nM PTHrP 1–34 increased net calcium uptake two- to threefold in all regions. The stimulatory effect of PTHrP on net intestinal calcium absorption is consistent with a hypercalcemic role for the hormone. The results support the view that PTHrP, alone or in conjunction with recently identified PTH-like peptides, counteracts in vivo the hypocalcemic effects of stanniocalcin.


2018 ◽  
Vol 7 (1) ◽  
pp. 58-68 ◽  
Author(s):  
S. Portal-Núñez ◽  
J. A. Ardura ◽  
D. Lozano ◽  
I. Martínez de Toda ◽  
M. De la Fuente ◽  
...  

Objectives Oxidative stress plays a major role in the onset and progression of involutional osteoporosis. However, classical antioxidants fail to restore osteoblast function. Interestingly, the bone anabolism of parathyroid hormone (PTH) has been shown to be associated with its ability to counteract oxidative stress in osteoblasts. The PTH counterpart in bone, which is the PTH-related protein (PTHrP), displays osteogenic actions through both its N-terminal PTH-like region and the C-terminal domain. Methods We examined and compared the antioxidant capacity of PTHrP (1-37) with the C-terminal PTHrP domain comprising the 107-111 epitope (osteostatin) in both murine osteoblastic MC3T3-E1 cells and primary human osteoblastic cells. Results We showed that both N- and C-terminal PTHrP peptides at 100 nM decreased reactive oxygen species production and forkhead box protein O activation following hydrogen peroxide (H2O2)-induced oxidation, which was related to decreased lipid oxidative damage and caspase-3 activation in these cells. This was associated with their ability to restore the deleterious effects of H2O2 on cell growth and alkaline phosphatase activity, as well as on the expression of various osteoblast differentiation genes. The addition of Rp-cyclic 3′,5′-hydrogen phosphorothioate adenosine triethylammonium salt (a cyclic 3',5'-adenosine monophosphate antagonist) and calphostin C (a protein kinase C inhibitor), or a PTH type 1 receptor antagonist, abrogated the effects of N-terminal PTHrP, whereas protein phosphatase 1 (an Src kinase activity inhibitor), SU1498 (a vascular endothelial growth factor receptor 2 inhibitor), or an anti osteostatin antiserum, inhibited the effects of C-terminal PTHrP. Conclusion These findings indicate that the antioxidant properties of PTHrP act through its N- and C-terminal domains and provide novel insights into the osteogenic action of PTHrP. Cite this article: S. Portal-Núñez, J. A. Ardura, D. Lozano, I. Martínez de Toda, M. De la Fuente, G. Herrero-Beaumont, R. Largo, P. Esbrit. Parathyroid hormone-related protein exhibits antioxidant features in osteoblastic cells through its N-terminal and osteostatin domains. Bone Joint Res 2018;7:58–68. DOI: 10.1302/2046-3758.71.BJR-2016-0242.R2.


2002 ◽  
Vol 169 (9) ◽  
pp. 4840-4849 ◽  
Author(s):  
Guido Francini ◽  
Antonio Scardino ◽  
Kostas Kosmatopoulos ◽  
François A. Lemonnier ◽  
Giuseppe Campoccia ◽  
...  

Endocrinology ◽  
1994 ◽  
Vol 134 (5) ◽  
pp. 2230-2236 ◽  
Author(s):  
C J Pirola ◽  
H M Wang ◽  
M I Strgacich ◽  
A Kamyar ◽  
B Cercek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document