scholarly journals Thyroid hormone, L-T3, stimulates the expression of the angiotensinogen gene in cultured opossum kidney (OK) cells.

1992 ◽  
Vol 2 (8) ◽  
pp. 1360-1367 ◽  
Author(s):  
J S Chan ◽  
A H Chan ◽  
Z R Nie ◽  
R Sikstrom ◽  
S Lachance ◽  
...  

Angiotensinogen (ANG) messenger RNA is expressed in opossum kidney (OK) proximal tubular cells. To examine whether thyroid hormone, L-T3, could stimulate the expression of the ANG gene in OK proximal tubular cells, fusion genes, consisting of various lengths of the 5'-flanking region of the rat angiotensinogen gene linked to a human growth hormone reporter gene, were constructed and introduced into OK cells. As a negative control, they were introduced into a nonkidney cell line, a human choriocarcinoma cell line (JEG-3). The level of the expression of fusion genes in these cells were determined by the level of immunoreactive human growth hormone secreted into the culture medium. The expression of ANG-growth hormone (ANG-GH) fusion genes pOGH (ANG N-1498/+18), pOGH (ANG N-688/+18), pOGH (ANG N-110/+18), pOGH (ANG N-53/+18), and pOGH (ANG N-35/+18) was 226-, 4.5-, 1.0-, 12-, and 2.5-fold higher than promoterless pOGH in the expression of growth hormone activity in OK cells. No significant expression of any of these ANG-GH fusion genes over the promoterless pOGH was observed in JEG-3 cells. The addition of L-T3 stimulates the expression of pOGH (ANG N-1498/+18) in a dose-dependent manner with a maximal and half-maximal effect at 10(-7) M and at 10(-8) to 10(-9) M, respectively. Thyroid hormone (10(-7) M) also stimulates the expression of pOGH (ANG N-688/+18) but not pOGH (ANG N-110/+18), pOGH (ANG N-53/+18), or pOGH (ANG N-35/+18).(ABSTRACT TRUNCATED AT 250 WORDS)

1992 ◽  
Vol 2 (10) ◽  
pp. 1516-1522
Author(s):  
J S Chan ◽  
M Ming ◽  
Z R Nie ◽  
R Sikstrom ◽  
S Lachance ◽  
...  

Angiotensinogen (ANG) messenger RNA is expressed in cultured opossum kidney (OK) proximal tubular cells. The aim of these studies was to investigate whether steroid hormones (dexamethasone, estradiol, testosterone, and progesterone) could stimulate the expression of renal ANG gene in vitro. Fusion genes consisting of various lengths of the 5'-flanking region of the rat ANG gene linked to a chloramphenicol acetyl transferase (CAT) reporter gene were constructed and introduced into cultured OK cells. The level of expression of fusion genes was determined by the level of cellular CAT enzymatic activity. The addition of dexamethasone (10(-12) to 10(-6) M) stimulates the expression of the pOCAT (ANG N-1498/+18) fusion gene in OK cells in a dose-dependent manner with a maximum stimulation at 10(-6) M and a half-maximal stimulation at 10(-9) M. Combination of dexamethasone (10(-6) M) and thyroid hormone, L-T3 (10(-6) M), further enhanced the effect of the dexamethasone alone. Testosterone (10(-6) M), estradiol (10(-6) M), and progesterone (10(-6) M) did not have this effect. Moreover, dexamethasone also stimulates the expression of the pOCAT (ANG N-688/+18) but not pOCAT (ANG N-110/+18), pOCAT (ANG N-53/+18) and pOCAT (ANG N-35/+18). These studies demonstrate that the glucocorticoid hormone is effective at stimulating the transcription of the ANG gene in OK cells, but stimulation is not observed from testosterone, estradiol, or progesterone. Moreover, glucocorticoid and L-T3 act synergistically to stimulate the transcription of the ANG gene.(ABSTRACT TRUNCATED AT 250 WORDS)


1995 ◽  
Vol 268 (1) ◽  
pp. R105-R111 ◽  
Author(s):  
M. Ming ◽  
T. T. Wang ◽  
S. Lachance ◽  
A. Delalandre ◽  
S. Carriere ◽  
...  

We transiently transfected fusion genes with the 5'-flanking region of the angiotensinogen gene linked to a bacterial chloramphenicol acetyltransferase (CAT) coding sequence as a reporter into opossum kidney (OK) cells. The addition of 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP) (10(-3)-10(-7) M) or forskolin (10(-9)-10(-5) M) stimulated the expression of the plasmid pOCAT [angiotensinogen nucleotide (N) -1498/+18] fusion gene in OK cells in a dose-dependent manner. The addition of dexamethasone (Dex) (10(-6) M) further enhanced the stimulatory effect of 8-BrcAMP or forskolin, whereas the addition of (R)-p-adenosine 3',5'-cyclic monophosphorothioate [(Rp)-cAMP[S], an inhibitor of cAMP-dependent protein kinase A, I and II] blocked the stimulatory effect of 8-BrcAMP. Furthermore, the addition of 8-BrcAMP (10(-3) M) or Dex (10(-6) M) or a combination of both stimulated the expression of pOCAT (angiotensinogen N -1138/+18), pOCAT (angiotensinogen N -960/+18), pOCAT (angiotensinogen N -814/+18), and pOCAT (angiotensinogen N -688/+18), but had no effect on the expression of pOCAT (angiotensinogen N -280/+18), pOCAT (angiotensinogen N -198/+18), pOCAT (angiotensinogen N -110/+18), pOCAT (angiotensinogen N -53/+18), and pOCAT (angiotensinogen N -35/+18). To further localize the putative cAMP-responsive element (CRE) in the angiotensinogen gene, we constructed fusion genes by inserting the DNA fragments angiotensinogen N -814 to N -689, angiotensinogen N -814 to N -761, and angiotensinogen N -760 to N -689 of the 5'-flanking region of the angiotensinogen gene upstream of the thymidine kinase (TK) promoter fused to a CAT gene and introduced them into OK cells.(ABSTRACT TRUNCATED AT 250 WORDS)


1998 ◽  
Vol 9 (6) ◽  
pp. 960-968 ◽  
Author(s):  
M Gekle ◽  
S Mildenberger ◽  
R Freudinger ◽  
S Silbernagl

To avoid renal loss of large amounts of proteins, filtered proteins are reabsorbed by endocytosis along the proximal tubule. However, although protein reabsorption is a task of proximal tubular cells, it is also a threat because it may cause cell injury. This study determines whether exposure to bovine serum albumin (BSA) leads to regulatory changes in endocytosis of FITC-BSA in proximal tubule-derived opossum kidney cells. Preincubation with BSA led to a decrease of FITC-BSA endocytosis with an IC50 value of 0.58 g/L. Specific binding of FITC-BSA to the apical membrane was also reduced (IC50 = 0.69 g/L). Kinetic analyses revealed that maximal uptake rate and maximal binding capacity were decreased with no change in affinity. Similar effects were observed after preincubation with equimolar amounts of other proteins (lactalbumin, transferrin, and conalbumin), but not after preincubation with dextran. The effect of preincubation with BSA could be mimicked by preincubation with some amino acids. Preincubation with L-Ala, L-Gln, or NH4Cl, but not with L-Leu, L-Glu, or L-Asp, reduced FITC-BSA endocytosis and binding. Preincubation with BSA, but not with dextran, reduced protein degradation and increased ammonia production, vesicular pH, as well as the rate of lactate dehydrogenase release. Apical fluid-phase endocytosis and apical uptake of neutral amino acids were not reduced. It is concluded that proximal tubular cells reduce the uptake rate for proteins, but not for other substrates, in response to increased protein load. This reduction is achieved by reducing the number of apical binding sites, partially in response to increased ammoniagenesis with deranged vesicular pH and enzyme activities. Thus, increased protein filtration could result in reduced protein reabsorption, thereby enhancing proteinuria.


1999 ◽  
Vol 55 (2) ◽  
pp. 454-464 ◽  
Author(s):  
Shao-LING Zhang ◽  
Janos G. Filep ◽  
Thomas C. Hohman ◽  
Shiow-SHIH Tang ◽  
Julie R. Ingelfinger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document