scholarly journals Cardiac preconditioning with 4-h, 17°C ischemia reduces [Ca2+]i load and damage in part via KATP channel opening

2002 ◽  
Vol 282 (6) ◽  
pp. H1961-H1969 ◽  
Author(s):  
Qun Chen ◽  
Amadou K. S. Camara ◽  
Jianzhong An ◽  
Matthias L. Riess ◽  
Enis Novalija ◽  
...  

Brief ischemia before normothermic ischemia protects hearts against reperfusion injury (ischemic preconditioning, IPC), but it is unclear whether it protects against long-term moderate hypothermic ischemia. We explored in isolated guinea pig hearts 1) the influence of two 2-min periods of normothermic ischemia before 4 h, 17°C hypothermic ischemia on cardiac cytosolic [Ca2+], mechanical and metabolic function, and infarct size, and 2) the potential role of KATP channels in eliciting cardioprotection. We found that IPC before 4 h moderate hypothermia improved myocardial perfusion, contractility, and relaxation during normothermic reperfusion. Protection was associated with markedly reduced diastolic [Ca2+] loading throughout both hypothermic storage and reperfusion. Global infarct size was markedly reduced from 36 ± 2 (SE)% to 15 ± 1% with IPC. Bracketing ischemic pulses with 200 μM 5-hydroxydecanoic acid or 10 μM glibenclamide increased infarct size to 28 ± 3% and 26 ± 4%, respectively. These results suggest that brief ischemia before long-term hypothermic storage adds to the cardioprotective effects of hypothermia and that this is associated with decreased cytosolic [Ca2+] loading and enhanced ATP-sensitive K channel opening.

F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 1010 ◽  
Author(s):  
John A. Gray ◽  
Karen Zito ◽  
Johannes W. Hell

Provocative emerging evidence suggests that the N-methyl-D-aspartate (NMDA) receptor can signal in the absence of ion flux through the receptor. This non-ionotropic signaling is thought to be due to agonist-induced conformational changes in the receptor, independently of channel opening. Non-ionotropic NMDA receptor signaling has been proposed to be sufficient to induce synaptic long-term depression (LTD), directly challenging the decades-old model that prolonged low-level calcium influx is required to induce LTD. Here, we briefly review these recent findings, focusing primarily on the potential role of non-ionotropic signaling in NMDA receptor-mediated LTD. Further reports concerning additional roles of non-ionotropic NMDA receptor signaling are also discussed. If validated, this new view of NMDA receptor-mediated signaling will usher in an exciting new era of exploring synapse function and dysfunction.


2006 ◽  
Vol 290 (1) ◽  
pp. H434-H440 ◽  
Author(s):  
David F. Stowe ◽  
Mohammed Aldakkak ◽  
Amadou K. S. Camara ◽  
Matthias L. Riess ◽  
Andre Heinen ◽  
...  

ATP-sensitive K+ channel opening in inner mitochondrial membranes protects hearts from ischemia-reperfusion (I/R) injury. Opening of the Big conductance Ca2+-sensitive K+ channel (BKCa) is now also known to elicit cardiac preconditioning. We investigated the role of the pharmacological opening of the BKCa channel on inducing mitochondrial preconditioning during I/R and the role of O2-derived free radicals in modulating protection by putative mitochondrial (m)BKCa channel opening. Left ventricular (LV) pressure (LVP) was measured with a balloon and transducer in guinea pig hearts isolated and perfused at constant pressure. NADH, reactive oxygen species (ROS), principally superoxide (O2−·), and m[Ca2+] were measured spectrophotofluorometrically at the LV free wall using autofluorescence and fluorescent dyes dihydroethidium and indo 1, respectively. BKCa channel opener 1-(2′-hydroxy-5′-trifluoromethylphenyl)-5-trifluoromethyl-2(3H)benzimid-axolone (NS; NS-1619) was given for 15 min, ending 25 min before 30 min of global I/R. Either Mn(III)tetrakis(4-benzoic acid)porphyrin (TB; MnTBAP), a synthetic dismutator of O2−·, or an antagonist of the BKCa channel paxilline (PX) was given alone or for 5 min before, during, and 5 min after NS. NS pretreatment resulted in a 2.5-fold increase in developed LVP and a 2.5-fold decrease in infarct size. This was accompanied by less O2−· generation, decreased m[Ca2+], and more normalized NADH during early ischemia and throughout reperfusion. Both TB and PX antagonized each preconditioning effect. This indicates that 1) NS induces a mitochondrial-preconditioned state, evident during early ischemia, presumably on mBKCa channels; 2) NS effects are blocked by BKCa antagonist PX; and 3) NS-induced preconditioning is dependent on the production of ROS. Thus NS may induce mitochondrial ROS release to initiate preconditioning.


2001 ◽  
Vol 95 (6) ◽  
pp. 1435-1440 ◽  
Author(s):  
Shinji Kohro ◽  
Quinn H. Hogan ◽  
Yuri Nakae ◽  
Michiaki Yamakage ◽  
Zeljko J. Bosnjak

Background Volatile anesthetics show an ischemic preconditioning-like cardioprotective effect, whereas intravenous anesthetics have cardioprotective effects for ischemic-reperfusion injury. Although recent evidence suggests that mitochondrial adenosine triphosphate-regulated potassium (mitoK(ATP)) channels are important in cardiac preconditioning, the effect of anesthetics on mitoK(ATP) is unexplored. Therefore, the authors tested the hypothesis that anesthetics act on the mitoK(ATP) channel and mitochondrial flavoprotein oxidation. Methods Myocardial cells were isolated from adult guinea pigs. Endogenous mitochondrial flavoprotein fluorescence, an indicator of mitochondrial flavoprotein oxidation, was monitored with fluorescence microscopy while myocytes were exposed individually for 15 min to isoflurane, sevoflurane, propofol, and pentobarbital. The authors further investigated the effect of 5-hydroxydeanoate, a specific mitoK(ATP) channel antagonist, on isoflurane- and sevoflurane-induced flavoprotein oxidation. Additionally, the effects of propofol and pentobarbital on isoflurane-induced flavoprotein oxidation were measured. Results Isoflurane and sevoflurane induced dose-dependent increases in flavoprotein oxidation (isoflurane: R2 = 0.71, n = 50; sevoflurane: R2 = 0.86, n = 20). The fluorescence increase produced by both isoflurane and sevoflurane was eliminated by 5-hydroxydeanoate. Although propofol and pentobarbital showed no significant effects on flavoprotein oxidation, they both dose-dependently inhibited isoflurane-induced flavoprotein oxidation. Conclusions Inhalational anesthetics induce flavoprotein oxidation through opening of the mitoK(ATP) channel. This may be an important mechanism contributing to anesthetic-induced preconditioning. Cardioprotective effects of intravenous anesthetics may not be dependent on flavoprotein oxidation, but the administration of propofol or pentobarbital may potentially inhibit the cardioprotective effect of inhalational anesthetics.


1995 ◽  
Vol 15 (2) ◽  
pp. 129-136 ◽  
Author(s):  
Hiroaki Suzuki ◽  
Liliana Schaefer ◽  
Hong Ling ◽  
Roland M. Schaefer ◽  
Jobst Dämmrich ◽  
...  

1997 ◽  
Vol 8 (12) ◽  
pp. 1831-1837 ◽  
Author(s):  
V Vallon ◽  
H Osswald ◽  
R C Blantz ◽  
S Thomson

Transport through the Na+-2Cl(-)-K+ cotransporter in the luminal membrane of macula densa cells is considered critical for tubuloglomerular feedback (TGF). Although various studies could support the importance of luminal Na+ and Cl-, the role of luminal K+ in TGF has not been thoroughly addressed. The study presented here examines this issue in nephrons with superficial glomeruli of anesthetized male Munich-Wistar-Frömter rats. Ambient Na+ concentration in early distal tubular fluid was approximately 22 mM, suggesting collection sites relatively close to the macula densa segment. First, it was found that ambient early distal tubular K+ concentration is approximately 1.3 mM, i.e., close to the K+ affinity of the Na+-2Cl(-)-K+ cotransporter in the thick ascending limb. Second, it was observed that a change in late proximal tubular flow rate, i.e., a maneuver that is known to induce a TGF response, significantly alters early distal tubular K+ concentration. Third, previous experiments failed to show an inhibition in TGF response during retrograde perfusion of the macula densa with K+-free solutions. Because of a potential K+ influx into the lumen between the perfusion site and the macula densa, however, the K+ channel blocker U37883A was added to the K+-free perfusate. TGF response was assessed as the fall in nephron filtration rate in response to retrograde perfusion of the macula densa segment from early distal tubular site. It was observed that luminal U37883A (100 microM) significantly attenuated TGF. Because adding 5 mM KCl to the perfusate restored TGF in the presence of U37883A and because the inhibitory action of U37883A on tubular K+ secretion was confirmed, the effect of U37883A on TGF was most likely caused by inhibition of K+ influx into the perfused segment, which decreased luminal K+ concentration at the macula densa. The present findings support a potential role for luminal K+ in TGF, which is in accordance with a transmission of the TGF signal across the macula densa via Na+-2Cl(-)-K+ cotransporter.


Open Heart ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. e001869
Author(s):  
Ingvild Maria Tøllefsen ◽  
Christian Shetelig ◽  
Ingebjørg Seljeflot ◽  
Jan Eritsland ◽  
Pavel Hoffmann ◽  
...  

ObjectiveInflammation has emerged as a new treatment target in patients with coronary artery disease and inflammation seems to play an important role in ischaemia/reperfusion injury that follows ST-elevation myocardial infarction (STEMI). We aimed to explore the role of acute and sustained interleukin 6 (IL-6) signalling, including soluble IL-6 receptor (IL-6R), with regard to infarct size, adverse remodelling and future cardiovascular events in patients with STEMI.MethodsWe included 269 patients with first-time STEMI, symptom duration <6 hours and treated with percutaneous coronary intervention. Blood sampling and cardiac MRI were performed in the acute phase and after 4 months. Clinical events and all-cause mortality were registered during 12-month and 70-month follow-up, respectively.ResultsIL-6 levels above median at all sampling points were significantly associated with increased infarct size and reduced left ventricular ejection fraction (LVEF). IL-6 levels in the highest quartile were at all sampling points associated with an increased risk of having an adverse clinical event during the first 12 months and with long-term all-cause mortality. IL-6R was not associated with infarct size, LVEF, myocardial salvage or long-term all-cause mortality.ConclusionAcute and sustained elevation of IL-6 measured 4 months after STEMI were associated with larger infarct size, reduced LVEF and adverse clinical events including all-cause mortality. The results add important information to the sustained role of inflammation in patients with STEMI and IL-6 as a potential target for long-term intervention.Trial registration numberNCT00922675.


2021 ◽  
Vol 22 (24) ◽  
pp. 13609
Author(s):  
Lucas Wauters ◽  
Raúl Y. Tito ◽  
Matthias Ceulemans ◽  
Maarten Lambaerts ◽  
Alison Accarie ◽  
...  

Proton pump inhibitors (PPI) may improve symptoms in functional dyspepsia (FD) through duodenal eosinophil-reducing effects. However, the contribution of the microbiome to FD symptoms and its interaction with PPI remains elusive. Aseptic duodenal brushings and biopsies were performed before and after PPI intake (4 weeks Pantoprazole 40 mg daily, FD-starters and controls) or withdrawal (2 months, FD-stoppers) for 16S-rRNA sequencing. Between- and within-group changes in genera or diversity and associations with symptoms or duodenal factors were analyzed. In total, 30 controls, 28 FD-starters and 19 FD-stoppers were followed. Mucus-associated Porphyromonas was lower in FD-starters vs. controls and correlated with symptoms in FD and duodenal eosinophils in both groups, while Streptococcus correlated with eosinophils in controls. Although clinical and eosinophil-reducing effects of PPI therapy were unrelated to microbiota changes in FD-starters, increased Streptococcus was associated with duodenal PPI effects in controls and remained higher despite withdrawal of long-term PPI therapy in FD-stoppers. Thus, duodenal microbiome analysis demonstrated differential mucus-associated genera, with a potential role of Porphyromonas in FD pathophysiology. While beneficial effects of short-term PPI therapy were not associated with microbial changes in FD-starters, increased Streptococcus and its association with PPIeffects in controls suggest a role for duodenal dysbiosis after long-term PPI therapy.


2021 ◽  
Vol 8 ◽  
Author(s):  
Mohammed M. Almutairi ◽  
Farzane Sivandzade ◽  
Thamer H. Albekairi ◽  
Faleh Alqahtani ◽  
Luca Cucullo

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The clinical manifestations of COVID-19 include dry cough, difficult breathing, fever, fatigue, and may lead to pneumonia and respiratory failure. There are significant gaps in the current understanding of whether SARS-CoV-2 attacks the CNS directly or through activation of the peripheral immune system and immune cell infiltration. Although the modality of neurological impairments associated with COVID-19 has not been thoroughly investigated, the latest studies have observed that SARS-CoV-2 induces neuroinflammation and may have severe long-term consequences. Here we review the literature on possible cellular and molecular mechanisms of SARS-CoV-2 induced-neuroinflammation. Activation of the innate immune system is associated with increased cytokine levels, chemokines, and free radicals in the SARS-CoV-2-induced pathogenic response at the blood-brain barrier (BBB). BBB disruption allows immune/inflammatory cell infiltration into the CNS activating immune resident cells (such as microglia and astrocytes). This review highlights the molecular and cellular mechanisms involved in COVID-19-induced neuroinflammation, which may lead to neuronal death. A better understanding of these mechanisms will help gain substantial knowledge about the potential role of SARS-CoV-2 in neurological changes and plan possible therapeutic intervention strategies.


Sign in / Sign up

Export Citation Format

Share Document