scholarly journals Locus recommendation using probabilistic matrix factorization techniques

2021 ◽  
Vol 17 (1) ◽  
pp. 1-25
Author(s):  
Rachna Behl ◽  
Indu Kashyap

Introduction: The present paper is the outcome of the research “Locus Recommendation using Probabilistic Matrix Factorization Techniques” carried out in Manav Rachna International Institute of Research and Studies, India in the year 2019-20.   Methodology: Matrix factorization is a model-based collaborative technique for recommending new items to the users.    Results: Experimental results on two real-world LBSNs showed that PFM consistently outperforms PMF. This is because the technique is based on gamma distribution to the model user and item matrix. Using gamma distribution is reasonable for check-in frequencies which are all positive in real datasets. However, PMF is based on Gaussian distribution that can allow negative frequency values as well.   Conclusion: The motive of the work is to identify the best technique for recommending locations with the highest accuracy and allow users to choose from a plethora of available locations; the best and interesting location based on the individual’s profile.   Originality: A rigorous analysis of Probabilistic Matrix Factorization techniques has been performed on popular LBSNs and the best technique for location recommendation has been identified by comparing the accuracy viz RMSE, Precision@N, Recall@N, F1@N of different models.   Limitations: User’s contextual information like demographics, social and geographical preferences have not been considered while evaluating the efficiency of probabilistic matrix factorization techniques for POI Recommendations.    

2022 ◽  
pp. 131-139
Author(s):  
T. Ramathulasi ◽  
M. Rajasekhar Babu

Many methods focus solely on the relationship between the API and the user and fail to capture their contextual value. Because of this, they could not get better accuracy. The accuracy of the API recommendation can be improved by considering the effect of API contextual information on their latent attribute and the effect of the user time factor on the latent attribute of the user through the deep learning-based matrix factorization method (DL-PMF). In this chapter, a CNN (convolutional neural network) with an attention mechanism for the hidden features of web API elements and an LSTM (long-term and short-term memory) network is introduced to find the hidden features of service users. Finally, the authors combined PMF (probabilistic matrix factorization) to estimate the value of the recommended results. Experimental results obtained by the DL-PMF method show better than the experimental results obtained by the PMF and the ConvMF (convolutional matrix factorization) method in the recommended accuracy.


2020 ◽  
Vol 9 (8) ◽  
pp. 464
Author(s):  
Thaair Ameen ◽  
Ling Chen ◽  
Zhenxing Xu ◽  
Dandan Lyu ◽  
Hongyu Shi

Travel location recommendation methods using community-contributed geotagged photos are based on past check-ins. Therefore, these methods cannot effectively work for new travel locations, i.e., they suffer from the travel location cold start problem. In this study, we propose a convolutional neural network and matrix factorization-based travel location recommendation method to address the problem. Specifically, a weighted matrix factorization method is used to obtain the latent factor representations of travel locations. The latent factor representation for a new travel location is estimated from its photos by using a convolutional neural network. Experimental results on a Flickr dataset demonstrate that the proposed method can provide better recommendations than existing methods.


2021 ◽  
Vol 11 (6) ◽  
pp. 2817
Author(s):  
Tae-Gyu Hwang ◽  
Sung Kwon Kim

A recommender system (RS) refers to an agent that recommends items that are suitable for users, and it is implemented through collaborative filtering (CF). CF has a limitation in improving the accuracy of recommendations based on matrix factorization (MF). Therefore, a new method is required for analyzing preference patterns, which could not be derived by existing studies. This study aimed at solving the existing problems through bias analysis. By analyzing users’ and items’ biases of user preferences, the bias-based predictor (BBP) was developed and shown to outperform memory-based CF. In this paper, in order to enhance BBP, multiple bias analysis (MBA) was proposed to efficiently reflect the decision-making in real world. The experimental results using movie data revealed that MBA enhanced BBP accuracy, and that the hybrid models outperformed MF and SVD++. Based on this result, MBA is expected to improve performance when used as a system in related studies and provide useful knowledge in any areas that need features that can represent users.


Data ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Ahmed Elmogy ◽  
Hamada Rizk ◽  
Amany M. Sarhan

In data mining, outlier detection is a major challenge as it has an important role in many applications such as medical data, image processing, fraud detection, intrusion detection, and so forth. An extensive variety of clustering based approaches have been developed to detect outliers. However they are by nature time consuming which restrict their utilization with real-time applications. Furthermore, outlier detection requests are handled one at a time, which means that each request is initiated individually with a particular set of parameters. In this paper, the first clustering based outlier detection framework, (On the Fly Clustering Based Outlier Detection (OFCOD)) is presented. OFCOD enables analysts to effectively find out outliers on time with request even within huge datasets. The proposed framework has been tested and evaluated using two real world datasets with different features and applications; one with 699 records, and another with five millions records. The experimental results show that the performance of the proposed framework outperforms other existing approaches while considering several evaluation metrics.


2021 ◽  
Vol 15 (3) ◽  
pp. 1-33
Author(s):  
Wenjun Jiang ◽  
Jing Chen ◽  
Xiaofei Ding ◽  
Jie Wu ◽  
Jiawei He ◽  
...  

In online systems, including e-commerce platforms, many users resort to the reviews or comments generated by previous consumers for decision making, while their time is limited to deal with many reviews. Therefore, a review summary, which contains all important features in user-generated reviews, is expected. In this article, we study “how to generate a comprehensive review summary from a large number of user-generated reviews.” This can be implemented by text summarization, which mainly has two types of extractive and abstractive approaches. Both of these approaches can deal with both supervised and unsupervised scenarios, but the former may generate redundant and incoherent summaries, while the latter can avoid redundancy but usually can only deal with short sequences. Moreover, both approaches may neglect the sentiment information. To address the above issues, we propose comprehensive Review Summary Generation frameworks to deal with the supervised and unsupervised scenarios. We design two different preprocess models of re-ranking and selecting to identify the important sentences while keeping users’ sentiment in the original reviews. These sentences can be further used to generate review summaries with text summarization methods. Experimental results in seven real-world datasets (Idebate, Rotten Tomatoes Amazon, Yelp, and three unlabelled product review datasets in Amazon) demonstrate that our work performs well in review summary generation. Moreover, the re-ranking and selecting models show different characteristics.


Inventions ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 49
Author(s):  
Zain-Aldeen S. A. Rahman ◽  
Basil H. Jasim ◽  
Yasir I. A. Al-Yasir ◽  
Raed A. Abd-Alhameed ◽  
Bilal Naji Alhasnawi

In this paper, a new fractional order chaotic system without equilibrium is proposed, analytically and numerically investigated, and numerically and experimentally tested. The analytical and numerical investigations were used to describe the system’s dynamical behaviors including the system equilibria, the chaotic attractors, the bifurcation diagrams, and the Lyapunov exponents. Based on the obtained dynamical behaviors, the system can excite hidden chaotic attractors since it has no equilibrium. Then, a synchronization mechanism based on the adaptive control theory was developed between two identical new systems (master and slave). The adaptive control laws are derived based on synchronization error dynamics of the state variables for the master and slave. Consequently, the update laws of the slave parameters are obtained, where the slave parameters are assumed to be uncertain and are estimated corresponding to the master parameters by the synchronization process. Furthermore, Arduino Due boards were used to implement the proposed system in order to demonstrate its practicality in real-world applications. The simulation experimental results were obtained by MATLAB and the Arduino Due boards, respectively, with a good consistency between the simulation results and the experimental results, indicating that the new fractional order chaotic system is capable of being employed in real-world applications.


2016 ◽  
Vol 80 ◽  
pp. 366-375 ◽  
Author(s):  
Jiguang Liang ◽  
Kai Zhang ◽  
Xiaofei Zhou ◽  
Yue Hu ◽  
Jianlong Tan ◽  
...  

Robotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 68
Author(s):  
Lei Shi ◽  
Cosmin Copot ◽  
Steve Vanlanduit

In gaze-based Human-Robot Interaction (HRI), it is important to determine human visual intention for interacting with robots. One typical HRI interaction scenario is that a human selects an object by gaze and a robotic manipulator will pick up the object. In this work, we propose an approach, GazeEMD, that can be used to detect whether a human is looking at an object for HRI application. We use Earth Mover’s Distance (EMD) to measure the similarity between the hypothetical gazes at objects and the actual gazes. Then, the similarity score is used to determine if the human visual intention is on the object. We compare our approach with a fixation-based method and HitScan with a run length in the scenario of selecting daily objects by gaze. Our experimental results indicate that the GazeEMD approach has higher accuracy and is more robust to noises than the other approaches. Hence, the users can lessen cognitive load by using our approach in the real-world HRI scenario.


Sign in / Sign up

Export Citation Format

Share Document