scholarly journals Radioactive Minerals: General Status

Author(s):  
Yamuna Singh
2019 ◽  
Vol 9 (3) ◽  
pp. 161
Author(s):  
Sung-Eun Cho ◽  
Hyojin Chae ◽  
Hyung-Doo Park ◽  
Sail Chun ◽  
Yong-Wha Lee ◽  
...  

2021 ◽  
Vol 5 (3-4) ◽  
pp. 97-98
Author(s):  
Alan K. Percy ◽  
Rashmi Gopal-Srivastava

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Saurabh Mittal ◽  
S. P. Sharma ◽  
Arkoprovo Biswas ◽  
D. Sengupta

This study is an attempt to correlate VLF-EM data with the radiometric measurements to decipher the subsurface structure and to locate uranium mineralization in the shear zone. The study area is around Beldih mine which is an open cast apatite mine located on the South Purulia Shear Zone. VLF method has been applied to map the structure and the presence of radioactive minerals has been delineated by the detection of highαandγcounts with respect to the background radiations. High radiation counts and high surfaceγactivity are found just above the higher apparent current-density zones in all the profiles studied, at various locations, indicating uranium and/or thorium mineralization as well as good correlation between these techniques.


1978 ◽  
Vol 73 (8) ◽  
pp. 1738-1748 ◽  
Author(s):  
M. L. Meleik ◽  
K. M. Fouad ◽  
S. N. Wassef ◽  
A. A. Ammar ◽  
G. A. Dabbour

1958 ◽  
Vol 24 (2) ◽  
pp. 191-192
Author(s):  
W. C. McKern

David Baerreis’ review of The Effigy Mound Culture of Wisconsin, by Chandler Rowe (American Antiquity, Vol. 23, No. 3, pp. 320–1), includes certain criticisms of methods and procedures underlying the author’s treat’ ment of his subject that raise important questions as to the general status of archaeological concept and methodology.For example, commenting on Rowe’s rejection of the early guess that effigy mound shapes represent clan symbols, Baerreis appears to argue that at some time, some tribe or tribes could possibly have possessed totemic patterns that might account for effigy mound shapes.


EKSPLORIUM ◽  
2019 ◽  
Vol 40 (1) ◽  
pp. 33
Author(s):  
Ngadenin Ngadenin ◽  
Frederikus Dian Indrastomo ◽  
Widodo Widodo ◽  
Kurnia Setiawan Widana

ABSTRAKElla Ilir secara administratif terletak di Kabupaten Melawi, Kalimantan Barat. Geologi regional daerah Ella Ilir tersusun atas batuan malihan berumur Trias–Karbon yang diterobos oleh batuan granitik berumur Yura dan Kapur. Keterdapatan mineral radioaktif di daerah tersebut terindikasi dari radioaktivitas urat-urat magnetit pada batuan malihan berumur Trias–Karbon dengan kisaran nilai 1.000 c/s hingga 15.000 c/s. Tujuan dari penelitian ini adalah menentukan jenis cebakan mineral bijih dan mengidentifikasi keterdapatan mineral radioaktif pada urat-urat bijih magnetit di daerah Ella Ilir. Metode yang digunakan adalah pemetaan geologi, pengukuran radioaktivitas, analisis kadar uranium, dan analisis mineragrafi beberapa sampel urat bijih magnetit. Litologi daerah penelitian tersusun oleh kuarsit biotit, metatuf, metabatulanau, metapelit, granit biotit, dan riolit. Sesar sinistral barat-timur dan sesar dekstral utara-selatan merupakan struktur sesar yang berkembang di daerah ini. Komposisi mineral urat-urat magnetit terdiri dari mineral-mineral bijih besi, sulfida, dan radioaktif. Mineral bijih besi terdiri dari magnetit, hematit, dan gutit. Mineral sulfida terdiri dari pirit, pirhotit, dan molibdenit sedangkan mineral radioaktif terdiri dari uraninit dan gumit. Keterdapatan urat-urat bijih magnetit dikontrol oleh litologi dan struktur geologi. Urat-urat magnetit pada metabatulanau berukuran tebal (1,5–5 m), mengisi rekahan-rekahan yang terdapat di sekitar zona sesar. Sementara itu, urat-urat magnetit pada metapelit berukuran tipis (milimetrik–sentimetrik), mengisi rekahan-rekahan yang sejajar dengan bidang sekistositas. Cebakan mineral bijih di daerah penelitian adalah cebakan bijih besi atau cebakan bijih magnetit berbentuk urat karena proses hidrotermal magmatik.ABSTRACTElla Ilir administratively located in Melawi Regency, West Kalimantan. Regional geology of Ella Ilir area is composed of metamorphic rocks in Triassic–Carboniferous age which are intruded by Jurassic and Cretaceous granitic rocks. Radioactive minerals occurences in the area are indicated by magnetite veins radioactivities on Triassic to Carboniferous metamorphic rocks whose values range from 1,000 c/s to 15,000 c/s. Goal of the study is to determine the type of ore mineral deposits and to identify the presence of radioactive mineral in magnetite veins in Ella Ilir area. The methods used are geological mapping, radioactivity measurements, analysis on uranium grades, and mineragraphy analysis of severe magnetite veins samples. Lithologies of the study area are composed by biotite quartzite, metatuff, metasilt, metapellite, biotite granite, and ryolite. The east-west sinistral fault and the north-south dextral fault are the developed fault structures in this area. Mineral composition of magnetite veins are consists of iron ore, sulfide, and radioactive minerals. Iron ore mineral consists of magnetite, hematit, and goetite. Sulfide minerals consist of pyrite, pirhotite, and molybdenite, while radioactive minerals consist of uraninite and gummite. The occurences of magnetite veins are controlled by lithology and geological structures. The magnetite veins in metasilt are thick (1.5–5 m), filled the fractures in the fault zone. Meanwhile, the magnetite veins in metapellite are thinner (milimetric–centimetric), filled the fractures that are parallel to the schistocity. The ore deposits in the study area are iron ore deposits or magnetite ore deposits formed by magmatic hydrothermal processes. 


1974 ◽  
Vol 60 ◽  
pp. 1-54
Author(s):  
H Sørensen ◽  
J Rose-Hansen ◽  
B.L Nielsen ◽  
L Løvborg ◽  
E Sørensen ◽  
...  

The uranium-thorium deposit is located in part of an alkaline intrusion consisting of peralkaline, agpaitic nepheline syenites. The radioactive minerals are steenstrupine, uranium-rich monazite, thorite and pigmentary material. The radio-element content varies from 100 to 3000 ppm U and 300 to 15000 ppm Th. Reasonably assured ore in the main area with a grade of 310 ppm is calculated to 5800 metric tons of uranium in 18.6 million metric tons of ore. Estimated additional reserves with a grade of 292 ppm U are 29.4 million tons of ore with 8700 tons of uranium and 3.5 million tons of ore with a grade of 350 ppm yielding 1200 tons of uranium. Estimates of amounts of thorium ore are 2.6 times those of uranium. A method of recovery of the uranium based on sulphating roasting and subsequent leaching with water is described.


Sign in / Sign up

Export Citation Format

Share Document