scholarly journals METHOD FOR CALCULATION THE MODES OF STRIPS COLD ROLLING ON MULTIPLE-STAND ROLLING MILL ENSURING COST REDUCTION OF SHEET ROLLING SHOP PRODUCTION. REPORT 2. AN EXAMPLE OF THE METHOD PRACTICAL USE ON FOUR-STAND ROLLING MILL 1400

2019 ◽  
Vol 62 (9) ◽  
pp. 667-673
Author(s):  
A. I. Bozhkov ◽  
D. A. Kovalev ◽  
V. S. Potapov ◽  
R. I. Shul’gin

The second part of the paper describes the method practical use on four-stand rolling mill 1400. When rolling the chosen typical sizes, the task was to determine the specific rolling mode, which will ensure a minimum of the total specific energy consumption at the maximum rolling speed, maximum process stabilization (minimum breaks, idle times, etc.) and obtaining the specified quality of the rolled strips (no surface defects, meeting the thickness and flatness requirements). It was achieved by including the above requirements in the constraint system with respect to the determined rolling modes for the selected strip sizes. For example, ensuring a given (maximum) performance for a specific size and brand of a strip is equivalent to realizing a gi673 ven (increased) rolling speed in the absence of unscheduled downtime occurring in emergency situations (in particular, in strip breaks). The speed limit depends on the power of engines, which is included in the complex of structural and technological limitations. The obtained examples, given in the article, have shown that the use of the method leads to fulfillment of all the specified requirements, which, in turn, ensures a reduction in production cost and an increase in the mill’s productivity. The calculation of the cold rolling modes was reduced to selection and distribution of the crimping along the stands (passages – in the reversible mill) and to a choice of specific strip tension in the interstand spaces, on decoiler and coiler, and in setting the wedge of speeds in a particular system of constraints imposed on the input and output process variables as a function of the adopted optimality criterion. The task was solved using the conditional optimization method, through the specification of the optimization criterion. As such criterion, the total energy consumption of the rolling process was used, as requirements – technological and design constraints on the rolling parameters and conditions for strip stability to breaks and to formation of rolls surface defects (“brews”, “chippings”, etc.), as well as to strip breaks.

2019 ◽  
Vol 62 (7) ◽  
pp. 511-516
Author(s):  
A. I. Bozhkov ◽  
D. A. Kovalev ◽  
V. S. Potapov ◽  
R. I. Shul’gin

A method for calculating the modes of strips cold rolling on multiple-stand (reversing) rolling mill is considered providing minimum power consumption with maximum process stabilization at high speeds and obtaining the given quality of cold-rolled strips (minimum probability of surface defects, compliance with thickness tolerances and flatness requirements of the used standards). The problem is solved using the conditional optimization method. As an optimization criterion, it is proposed to use the total energy expenditure spent on the rolling process, as conditions – technological and structural limitations on the rolling parameters and conditions of strips stability to breaks and surface defects formation. The decision to develop this innovative method is due to the fact that a large number of existing approaches to calculation and design of rolling modes have visible advantages and disadvantages. In many cases, the researchers are trying to take into account several requirements that ensure stability of rolling process, its quality, the equipment operating conditions, reduction of energy consumption, metal, auxiliary materials and the specified (maximum) mill productivity. However, some of these requirements can be contradictory and the best one will be the mode that with a high degree of probability guarantees the fulfillment, in a certain proportion, of the entire set of requirements. Therefore, such calculation method is the presented in this article. Calculation of the cold rolling regimes was limited to selection and distribution of the crimping along the cages (passages in the reversing mill). Also, the strip strains are selected in the intercellular spaces, on the decoiler and coiler, and in setting the speed wedge in a particular system of constraints imposed on the input and output process variables as a function of the adopted optimality criterion. As it was noted earlier, the problem was solved with the help of the conditional optimization method with specification of the optimization criterion.


2011 ◽  
Vol 189-193 ◽  
pp. 2670-2674
Author(s):  
Zhi Jie Jiao ◽  
Chun Yu He ◽  
Jian Ping Li ◽  
Xiang Hua Liu

Pilot cold rolling mill is the important tool for the cold rolling process researching and new steel grade development. According to the design of the new type direct pulling pilot cold rolling mill, based on the mass flow constant principle, strip exit thickness indirect measurement method is studied. During rolling, strip entry and exit speed can be calculated accurately according to the measured value of two sides’ clamps movement. Data filtering treatment is adopted and program flow chart is designed. Based on the material entry thickness measured manually, exit thickness of all passes can be measured indirectly. This thickness indirect measurement method has been applied successfully on the new type pilot cold rolling mill, and the measurement results show that this method has a good accuracy.


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 401
Author(s):  
Hainan He ◽  
Jian Shao ◽  
Xiaochen Wang ◽  
Quan Yang ◽  
Xiawei Feng

Due to the requirement of magnetic properties of silicon steel sheets, producing high-precision size strips is the main aim of the cold rolling industry. The tapered work roll shifting technique of the six-high cold rolling mill is effective in reducing the difference in transverse thickness of the strip edge, but the effective area is limited, especially for a high crown strip after the hot rolling process. The six-high mill with a small work roll size can produce a strip with higher strength and lower thickness under a smaller rolling load. At the same time, the profile of the strip can be substantially improved. By advancing a well-established analytical method, a series of simulation analyses are conducted to reveal the effectiveness of a small work roll radius for the strip profile in the six-high cold rolling process. Through the analysis of flattening deformation and deflection deformation on the load, the change rule of the strip profile produced by the work roll with a small roll diameter can be obtained. Combined with theoretical analysis and industrial experiments, it can be found that the improvement effect of the small work roll radius on the profile of the silicon strip is as significant.


Author(s):  
A. V. Kozhevnikov

The process of continuous rolling is subjected to non-stationarity, accompanied by oscillations of not only basic technological and power parameters, but also parameters in the hearth of deformation. Non-stationarity at the rolling accounting high dynamic of the process results in origination of negative vibration effects. To prevent the vibrations originations the rolling speed is decreased, which prevents the reaching of the designing parameters of rolling mills operation. The study of influence of non-stationarity of the rolling technological process on gripping conditions and origination of dangerous oscillations was carried out. Characteristics of rolling mode of strip of 2.0–0.45 × 970 mm dimension, accompanied by vibration was presented, as well as graphs of the strip oscillations in the process of stationary rolling and under conditions of vibrations origination presented. An assumption made, that during vibrations origination the gripping conditions of the strip by rollers are disturbed. It means that provision of the grip stationarity will decrease the risk of the vibrations originating at the rolling. The assumption was confirmed by the studies of the cold rolling at five-stand mill 1700 of Cherepovets steel-works. The calculations of the hearth of deformation parameters were made by application of an elaborated dynamic model of the rolling process. The higher probability of vibrations originating at the rolling of strips of smaller thickness explained. It was shown, that due to the strip length, the rolling of the thinner metal is accomplished at higher speeds, comparing with the rolling of thicker metal. In addition, it was shown that the friction coefficient value at that would promote increase of risk of non-stationary rolling mode originating. The support of stable friction conditions in the hearth of deformation is promoted by usage of chrome-plated working rollers and asymmetrical rolling.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 677 ◽  
Author(s):  
Xin Jin ◽  
Changsheng Li ◽  
Yu Wang ◽  
Xiaogang Li ◽  
Yongguang Xiang ◽  
...  

In order to improve the cold rolled steel strip flatness, the load distribution of the tandem cold rolling process is subject to investigation and optimization. The strip deformation resistance model is corrected by an artificial neural network that is trained with the actual measured data of 4500 strip coils. Based on the model, a flatness prediction model of strip steel is established in a five-stand tandem cold rolling mill, and the precision of the flatness prediction model is verified by rolling experiment data. To analyze the effect of load distribution on flatness, the flatness of stand 4 is calculated to be 7.4 IU, 10.6 IU, and 16.8 IU under three typical load distribution modes. A genetic algorithm based on the excellent flatness is proposed to optimize the load distribution further. In the genetic algorithm, the classification of flatness of stand 4 calculated by the developed flatness prediction model is taken as the fitness function, with the optimal reduction of 28.6%, 34.6%, 27.3%, and 18.6% proposed for stands 1, 2, 3, and 4, respectively. The optimal solution is applied to a 1740 mm tandem cold rolling mill, which reduce the flatness classification from 10.8 IU to 3.2 IU for a 1-mm thick steel strip.


Energies ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 184 ◽  
Author(s):  
Ming Yan ◽  
Chien Aun Chan ◽  
André F. Gygax ◽  
Jinyao Yan ◽  
Leith Campbell ◽  
...  

Reducing the energy consumption of Internet services requires knowledge about the specific traffic and energy consumption characteristics, as well as the associated end-to-end topology and the energy consumption of each network segment. Here, we propose a shift from segment-specific to service-specific end-to-end energy-efficiency modeling to align engineering with activity-based accounting principles. We use the model to assess a range of the most popular instant messaging and video play applications to emerging augmented reality and virtual reality applications. We demonstrate how measurements can be conducted and used in service-specific end-to-end energy consumption assessments. Since the energy consumption is dependent on user behavior, we then conduct a sensitivity analysis on different usage patterns and identify the root causes of service-specific energy consumption. Our main findings show that smartphones are the main energy consumers for web browsing and instant messaging applications, whereas the LTE wireless network is the main consumer for heavy data applications such as video play, video chat and virtual reality applications. By using small cell offloading and mobile edge caching, our results show that the energy consumption of popular and emerging applications could potentially be reduced by over 80%.


Data in Brief ◽  
2018 ◽  
Vol 18 ◽  
pp. 891-901
Author(s):  
Emmanuel O. Ayuba ◽  
Christian.A. Bolu ◽  
Temitope M. John ◽  
Abiodun A. Abioye

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Onur Taşkın ◽  
Nazmi İzli ◽  
Ali Vardar

A photovoltaic energy-assisted industrial dryer has been analyzed. The dryer has been tested in various weather and working conditions with 3 kg of green peas from 75.6% initial moisture content to 20% final moisture content (w.b.). The effect of various drying air temperatures at three levels (40, 50, and 60°C) and two distinct air velocities (3 m/s and 4 m/s) was examined. Drying performance was assessed with regard to criteria including drying kinetics, specific and total energy consumption, and color and rehydration ratio. The results have proved that total drying duration reduces as air velocity rate and drying air temperature raise. Relying upon the drying durations, the generation performances of photovoltaic panels were between 5.261 and 3.953 W. On the other part, energy consumptions of dryer were between 37.417 and 28.111 W. The best specific energy consumption was detected in 50°C at 3 m/s for 600 minutes with 7.616 kWh/kg. All drying conditions caused darkening as color parameters. Rehydration assays have showed that rehydrated green peas attained higher capacity with raised air temperature and air velocity.


Sign in / Sign up

Export Citation Format

Share Document