Thermodynamic modeling of phase diagrams of binary and ternary oxide systems belonging to the FeO‒MgO‒MnO‒Al2O3 system

Author(s):  
G. G. Mikhailov ◽  
L. A. Makrovets ◽  
O. V. Samoilova
2015 ◽  
Vol 230 ◽  
pp. 51-54 ◽  
Author(s):  
V.I. Lutsyk ◽  
V.P. Vorob'eva ◽  
Anna Zelenaya

The Reference Book of Ternary Oxide Systems phase diagrams computer models is presented. Its computer models of T-x-y diagrams give a possibility to calculate the mass balances at any temperature, to observe crystallization history and the process of microstructure forming at different crystallization stages. The investigation of concentration fields with the different phase constituents on the T-x-y diagram projection by means of its computer model is considered. Phase diagram of CaO-SiO2-Al2O3system is used as an example.


2013 ◽  
Vol 32 (3) ◽  
pp. 247-254 ◽  
Author(s):  
In-Ho Jung ◽  
Pierre Hudon ◽  
Wan-Yi Kim ◽  
Marie-Aline van Ende ◽  
Miftaur Rahman ◽  
...  

AbstractThe Na2O-MgO-CaO-FeO-Fe2O3-Al2O3-SiO2-P2O5 system is a basic oxide system for the Basic Oxygen Furnace (BOF) process as well as the hot metal dephosphorization process. Numerous experimental investigations on this oxide system are being carried out to find out an advanced process route for P removal from molten iron. In spite of their industrial importance, however, phase equilibria in oxide systems containing P2O5 have not been well investigated due to the complexity of their chemistry. No systematic thermodynamic modeling of these systems has been conducted to date, either. In order to meet the strong demands of steelmaking and other industries, new systematic thermodynamic modeling of the P2O5-containing oxide systems (Na2O-MgO-CaO-FeO-Fe2O3-Al2O3-SiO2-P2O5) and key phase diagram experiments have been carried out over the past years. In the present study, the results of the thermodynamic modeling of unary, binary and ternary P2O5-containing systems and the applications of the thermodynamic database to the dephosphorization by multi-component slag in BOF process are presented in comparison with experimental data. All thermodynamic calculations were performed using FactSage thermodynamic software.


2020 ◽  
Vol 299 ◽  
pp. 468-474 ◽  
Author(s):  
Gennady G. Mikhailov ◽  
L.A. Makrovets ◽  
O.V. Samoilova

Thermodynamic modeling of phase equilibria in a liquid metal of Fe–La–Ce–O system at 1600 °С, using the technique of constructing the solubility surfaces for the components of a metal, was carried out. The calculation technique allowed assessing the depth of liquid iron de-oxidation at a complex use of lanthanum and cerium as deoxidizing agents. Also, diagrams of de-oxidants’ consumption for one ton of liquid oxygen-containing iron were calculated in the course of the work. Carrying out a calculation of the solubility surfaces for the components of a metal required simulation of phase diagrams of the following oxide systems: FeO–La2O3–Ce2O3, FeO–CeO2–La2O3, CeO2–La2O3–Ce2O3. The obtained results might be of interest for optimization of the use of rare-earth metals in steelmaking technology.


Processes ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 148
Author(s):  
Nikolay Charykov ◽  
Marina Charykova ◽  
Konstantin Semenov ◽  
Victor Keskinov ◽  
Alexey Kurilenko ◽  
...  

The thermodynamic approach for the description of multiphase open phase processes is developed based on van der Waals equation in the metrics of Gibbs and incomplete Gibbs potentials. Examples of thermodynamic modeling of the multiphase and multicomponent A3B5 systems (In-Ga-As-Sb and In-P-As-Sb) and Na+, K+, Mg2+, Ca2+//Cl−, SO42−-H2O water–salt system are presented. Topological isomorphism of different type phase diagrams is demonstrated.


2007 ◽  
Vol 71 (8) ◽  
pp. 1183-1186 ◽  
Author(s):  
L. B. Vedmid’ ◽  
V. F. Balakirev ◽  
A. M. Yankin ◽  
Yu. V. Golikov

2018 ◽  
Vol 61 (6) ◽  
pp. 460-465
Author(s):  
G. G. Mikhailov ◽  
L. A. Makrovets ◽  
L. A. Smirnov

At the present time, rare-earth elements in metallurgy are used in  the form of mischmetal – a rare-earth elements natural mixture (with  atomic numbers from 57 to 71). It contains about 50  wt.  % of cerium.  The remaining elements are mainly lanthanum and niobium. The specific composition is determined by the ore deposit. Inconstant composition of the modifier containing rare-earth metals (REM) can significantly reduce its efficiency. Experimentally, for every branded steels  composition the ratio of various REMs can’t be selected because of the  high costs of obtaining technically pure rare-earth metals. The task of  determining the each rare earth element optimum concentrations and  complex ligature composition can be solved by thermodynamic modeling. In the framework of thermodynamic modeling, the interaction  between magnesium, aluminum and lanthanum with oxygen in liquid  iron is presented. And the thermodynamic model of steel deoxidation  by these active metals composition is considered. On the basis of available literature data on the phase diagrams of the systems MgO – Al2O3 ,  MgO – La2O3 and La2O3 – Al2O3 , the coordinates of the invariant equilibria points in the system MgO – La2O3 – Al2O3 were determined. The  phase diagram of the system MgO – La2O3 – Al2O3 was constructed. It  made possible to establish all phase equilibria realized in the process  of deoxidation of steel with magnesium, lanthanum and aluminum and  to describe these phase equilibria by chemical reactions equations. The  activity of the components in liquid oxide melts was determined using  the theory of subregular ionic solutions, which takes into account the  dependence of the coordination number of cations on the composition  of the oxide melt. The activity of components in metal melts conjugated with oxide systems were determined by Wagner’s theory using the  parameters of the first order interaction. Equilibrium constants values  for the steel deoxidation reactions are installed indirectly by thermodynamic calculations. On the basis of the obtained data the components  solubility surface in the metal melts of Fe – Mg – Al – La – O system  was constructed, which allowed to determine the liquid metal composition regions associated with the corresponding oxide phase.


2020 ◽  
Vol 989 ◽  
pp. 3-9 ◽  
Author(s):  
O.V. Samoilova ◽  
L.A. Makrovets

Thermodynamic modeling of coordinates of phase diagrams’ liquidus lines of the FeO–MgO, FeO–Al2O3, MgO–Al2O3 systems and coordinates of phase diagram’s liquidus surface of the FeO–MgO–Al2O3 system has been carried out. In the course of work, a thermodynamic model which describes activity of oxide melt had been selected for each of the systems; energy parameters of the model have been determined. Regions of thermodynamic stability of solid phases which are at equilibrium with the oxide melt have been determined. Results of the modeling have been compared with experimental data existing in the literature. Modeling technique has also allowed evaluating enthalpies and entropies of FeAl2O4 and MgAl2O4 compounds’ formation out of components of the oxide melt. The obtained results are of interest for steelmaking industry processes when determining the melt temperature of a slag containing oxides of iron, magnesium and aluminum.


Sign in / Sign up

Export Citation Format

Share Document