Obtaining a composite material based on Fe3O4 particles coated with Al nanoparticles using a rotating magnetic field

Author(s):  
I. A. Shorstkii ◽  
N. Yakovlev
2018 ◽  
Vol 83 (2) ◽  
pp. 20901 ◽  
Author(s):  
Ahmed Chaouki Lahrech ◽  
Bachir Abdelhadi ◽  
Mouloud Feliachi ◽  
Abdelhalim Zaoui ◽  
Mohammed Naїdjate

This paper proposes a contactless method for the identification of the electrical conductivity tensor of a carbon fiber composite materials plate using a rotating magnetic field and multi-coil eddy current sensor. This sensor consists of identical rectangular multi-coil, excited by two-phase sinusoidal current source in order to generate a rotating magnetic field and to avoid the mechanical rotation of the sensor. The fibers orientations, the longitudinal and transverse conductivities in each ply of carbon fiber composite material plate were directly determined with analysis of the impedance variation of each coil as function of its angular position. The inversion process is based on the use of artificial neural networks. The direct calculation associated with artificial neural networks makes use of 3D time-harmonic finite element method based on the A, V–A formulation.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 621
Author(s):  
Ivan Shorstkii ◽  
Maxim Sosnin

Soft magnetic composites (SMCs) of Fe3O4 particles coated with Al nanoparticles were prepared using the rotating magnetic field method, and the microwave absorption properties and microstructures of these composites were investigated. The results show that a well-distributed Al nanoparticles coating layer was formed on the surface of the Fe3O4 particles upon mechanical friction and rotating magnetic field distribution. Scanning electron microscopy SEM and X-ray diffraction XRD studies show that the rotating magnetic field method can produce a uniform coating of the aluminium layer on the Fe3O4 particles. Compared with common composites from Fe3O4 particles, SMCs of Fe3O4(Al) particles have stronger magnetic loss behaviour and weaker dielectric loss ability, as well as good reflection characteristics over a wide frequency range. The minimum reflection loss (RL) is −16.2 dB at 12.0 GHz for a corresponding thickness of 5 mm obtained for SMCs of Fe3O4(Al) particles. The presented rotating magnetic field method used in the Fe3O4 particles coating process with Al nanoparticles has great potential in composite materials synthesis with different morphology and areas of application.


Author(s):  
О. Karlov ◽  
◽  
I. Kondratenko ◽  
R. Kryshchuk ◽  
A. Rashchepkin ◽  
...  

2014 ◽  
Vol 29 (15) ◽  
pp. 1656-1663 ◽  
Author(s):  
Hang Chen ◽  
Jinchuan Jie ◽  
Kateryna Svynarenko ◽  
Hongjun Ma ◽  
Tingju Li

Abstract


Sign in / Sign up

Export Citation Format

Share Document