scholarly journals Application of Phytoremediation for Total Nitrogen and Total Phosphorus Removal from Treated Swine Wastewater and Bio-methane Potential of the Biomass

Author(s):  
Sartika Indah Amalia Sudiarto ◽  
Hong Lim Choi ◽  
Anriansyah Renggaman
2006 ◽  
Vol 41 (4) ◽  
pp. 449-462 ◽  
Author(s):  
Jan A. Oleszkiewicz ◽  
James L. Barnard

Abstract The European Union (EU) has implemented effluent (emission) standards since 1991, while North America practices a riskbased, imission approach. Progressing eutrophication and large fees for discharged loads push EU countries toward more stringent effluent concentrations, below total nitrogen (TN) levels of 10 mg/L and total phosphorus (TP) levels of 1 mg/L. In North America, the limit of treatment technology (LOT) concept has been defined as the lowest economically achievable effluent quality, which for TN is <1.5 to 3 mg/L and TP is <0.07 mg/L. These limits are becoming targets in fragile ecoregions in North America and drive the technology solutions towards a combination of advanced biological nutrient removal process trains, followed by chemical polishing and solids separation by granular or cloth filters or membranes. In Western Canada one-biomass biological nutrient removal processes are used, such as Westbank or Step-feed, often followed by filtration to achieve low effluent total phosphorus levels. Eastern Canada has a less stringent approach to nitrogen control and practices chemical phosphorus removal. Requirement for total nitrogen removal and rising costs of phosphorus precipitation drive designers towards advanced one-biomass processes and full utilization of carbon (for denitrification and phosphorus removal) available in raw wastewater and primary sludge. New processes are developed to take advantage of carbon available in waste activated sludge or even in the recycled activated sludge. Sludge treatment return streams have high nutrient loads and novel processes are introduced for their treatment, some utilizing generated nitrifier biomass for bio-augmentation of the main stream nitrification process. The impact of sludge processing on the liquid train and vice versa is now fully embedded in the design process.


1990 ◽  
Vol 22 (3-4) ◽  
pp. 65-72 ◽  
Author(s):  
H.-H. Schierup ◽  
H. Brix

Since 1983 approximately 150 full-scale emergent hydrophyte based wastewater treatment plants (reed beds) have been constructed in Denmark to serve small wastewater producers. The development of purification performance for 21 plants representing different soil types, vegetation, and hydraulic loading rates has been recorded. Cleaning efficiencies were typically in the range of 60-80% reduction for BOD, 25-50% reduction for total nitrogen, and 20-40% reduction for total phosphorus. The mean effluent BOD, total nitrogen and total phosphorus concentrations of the reed beds were 19 ± 10, 22 ± 9 and 6.7 ± 3.2 mg/l (mean ± SD), respectively. Thus, the general Danish effluent standards of 8 mg/l for N and 1.5 mg/l for P for sewage plants greater than 5,000 PE cannot be met by the present realised design of EHTS. The main problem observed in most systems is a poor development of horizontal hydraulic conductivity in the soil which results in surface run-off. Since the political demands for effluent quality will be more strict in the future, it is important to improve the performance of small decentral sewage treatment plants. On the basis of experiences from different types of macrophyte based and conventional low-technology wastewater treatment systems, a multi-stage system is suggested, consisting of sedimentation and sand filtration facilities followed by basins planted with emergent and submergent species of macrophytes and algal ponds.


Our Nature ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 48-54
Author(s):  
Ram Bhajan Mandal ◽  
Sunila Rai ◽  
Madhav Kumar Shrestha ◽  
Dilip Kumar Jha ◽  
Narayan Prasad Pandit

An experiment was carried to assess the effect of red algal bloom on growth and production of carp, water quality and profit from carp for 120 days at Aquaculture Farm of Agriculture and Forestry University, Chitwan. The experiment included two treatments: carp polyculture in non-red pond and carp polyculture in red pond with algal bloom each with three replicates. Carp fingerlings were stocked at 1 fish/m2 and fed with pellet containing 24% CP at 3% body weight. Net yield of rohu was found significantly higher (p<0.05) in non-red ponds (0.38±0.01 t ha-1) than red ponds (0.24±0.05 t ha-1). Survival of rohu (84.9±1.4%), bighead (95.2±2.0%) and mrigal (88.1±14.4%) were also significantly higher (p<0.05) in non-red ponds than red ponds. Red algal bloom affected DO, nitrate and chlorophyll-a, nitrite, total nitrogen, total phosphorus, total dissolved solids and conductivity. However, overall carp production and profit from carp remained unaffected.


Sign in / Sign up

Export Citation Format

Share Document