scholarly journals Effect of red algal bloom on growth and production of carps

Our Nature ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 48-54
Author(s):  
Ram Bhajan Mandal ◽  
Sunila Rai ◽  
Madhav Kumar Shrestha ◽  
Dilip Kumar Jha ◽  
Narayan Prasad Pandit

An experiment was carried to assess the effect of red algal bloom on growth and production of carp, water quality and profit from carp for 120 days at Aquaculture Farm of Agriculture and Forestry University, Chitwan. The experiment included two treatments: carp polyculture in non-red pond and carp polyculture in red pond with algal bloom each with three replicates. Carp fingerlings were stocked at 1 fish/m2 and fed with pellet containing 24% CP at 3% body weight. Net yield of rohu was found significantly higher (p<0.05) in non-red ponds (0.38±0.01 t ha-1) than red ponds (0.24±0.05 t ha-1). Survival of rohu (84.9±1.4%), bighead (95.2±2.0%) and mrigal (88.1±14.4%) were also significantly higher (p<0.05) in non-red ponds than red ponds. Red algal bloom affected DO, nitrate and chlorophyll-a, nitrite, total nitrogen, total phosphorus, total dissolved solids and conductivity. However, overall carp production and profit from carp remained unaffected.

1983 ◽  
Vol 40 (1) ◽  
pp. 92-95 ◽  
Author(s):  
E. E. Prepas

Total dissolved solids (TDS) and chlorophyll a were not related in 25 lakes which were all off the Precambrian Shield. Both on-shield and off-shield lakes were included in the previous reports which showed a significant relationship between TDS and productivity. When data from on-shield and off-shield lakes were analyzed separately, there was no significant positive relationship between TDS and lake biomass or productivity. It was also shown that mean depth ([Formula: see text]) was as good a predictor of fish production as the TDS: [Formula: see text] ratio, the morphoedaphic index.Key words: TDS, biomass, productivity, morphoedaphic index, chlorophyll a, lakes


2014 ◽  
Vol 38 (2) ◽  
pp. 656-668 ◽  
Author(s):  
Karina Hacke Ribeiro ◽  
Nerilde Favaretto ◽  
Jeferson Dieckow ◽  
Luiz Cláudio de Paula Souza ◽  
Jean Paolo Gomes Minella ◽  
...  

Water degradation is strongly related to agricultural activity. The aim of this study was to evaluate the influence of land use and some environmental components on surface water quality in the Campestre catchment, located in Colombo, state of Parana, Brazil. Physical and chemical attributes were analyzed (total nitrogen, ammonium, nitrate, total phosphorus, electrical conductivity, pH, temperature, turbidity, total solids, biological oxygen demand, chemical oxygen demand and dissolved oxygen). Monthly samples of the river water were taken over one year at eight monitoring sites, distributed over three sub-basins. Overall, water quality was worse in the sub-basin with a higher percentage of agriculture, and was also affected by a lower percentage of native forest and permanent preservation area, and a larger drainage area. Water quality was also negatively affected by the presence of agriculture in the riparian zone. In the summer season, probably due to higher rainfall and intensive soil use, a higher concentration of total nitrogen and particulate nitrogen was observed, as well as higher electrical conductivity, pH and turbidity. All attributes, except for total phosphorus, were in compliance with Brazilian Conama Resolution Nº 357/2005 for freshwater class 1. However, it should be noted that these results referred to the base flow and did not represent a discharge condition since most of the water samples were not collected at or near the rainfall event.


2020 ◽  
Vol 4 (3) ◽  
pp. 333-342
Author(s):  
KEHINDE MONSURU YUSUFF ◽  
M. Lawal ◽  
A. T. Audu ◽  
O. A. Wale-Orojo

The health benefits in the description and observation of quantitative contents of quality parameters present or contained in any water source cannot be underestimated as they determine selection of best choice from available water sources for different intended uses as well as resource consumption. It also helps to compare the observed quantity of the quality with the acceptable standards or limits to get desired results. Physical parameters like pH, temperature, electrical conductivity (EC) and total dissolved solids (TDS) among others are determined by present of other chemical properties like Cations (Mg2+, Ca2+, Na+, etc), Anions (Cl-, NO3-, SO42+, etc), heavy metals and other dissolved materials during the course of its formation in different proportions and amounts. This study observed EC and TDS of 20 selected boreholes as two close and correlated water quality parameters as well as two of the major water quality parameters that account for overall quality of any water source, despite their different quantitative contents and physical features, they are likely determined by the same set of cations and anions with similar constraint equations. In contrast to linear programming, multiple criteria optimization models were fitted for EC and TDS using Response Surface Methodology via desirability techniques, optimal values obtained in this case measured against several criteria are found to lie between acceptable standards limits for drinking water, other numerical values and descriptive features in the final results reflect that the response equations obtained were well fitted.


he water quality analysis is an important aspect in understanding the behavior of water and what can they be used for. This study gives us a valuable information on the general properties of water quality parameters like pH, electrical conductivity, TDS, Bicarbonate, Sulfate, Nitrate, chloride etc. of the study area . Water samples were analyzed at the water quality lab. NIH, Roorkee for pH, electrical conductivity and total dissolved solids. The pH of water varied from 7.14 to 7.75. The electrical conductivity (EC) of sample falls from 620µS/cm to 2000µS/cm. The overall total dissolved solids in water of study area varied from 120mg/l to 900mg/l. Overall the range of the Chloride in water of the study area tend to falls between 13mg/l to 375mg/l. Sulfate of all the water samples that were collected from the study area have ranged from 28mg/l to 250mg .The range of the Bicarbonate of all the water samples varied from 320mg/l to 1051mg/l. The study area helps to know about water quality parameters and how to find their values by usingtwo methods : 1) titration method 2) instrumental method .It also helps us to apply these water quality parameters in ArcGis. It helps us to show the values of different parameters in different blocks ofambala for different years In this we have studied different blocks of ambala district Haryana .We have taken the samples from different places from the blocks and also samples are from wells, canal , rivers, ponds.


2009 ◽  
Vol 6 (2) ◽  
pp. 523-530 ◽  
Author(s):  
C. R. Ramakrishnaiah ◽  
C. Sadashivaiah ◽  
G. Ranganna

The present work is aimed at assessing the water quality index (WQI) for the groundwater of Tumkur taluk. This has been determined by collecting groundwater samples and subjecting the samples to a comprehensive physicochemical analysis. For calculating the WQI, the following 12 parameters have been considered: pH, total hardness, calcium, magnesium, bicarbonate, chloride, nitrate, sulphate, total dissolved solids, iron, manganese and fluorides. The WQI for these samples ranges from 89.21 to 660.56. The high value of WQI has been found to be mainly from the higher values of iron, nitrate, total dissolved solids, hardness, fluorides, bicarbonate and manganese in the groundwater. The results of analyses have been used to suggest models for predicting water quality. The analysis reveals that the groundwater of the area needs some degree of treatment before consumption, and it also needs to be protected from the perils of contamination


2015 ◽  
Vol 16 (SE) ◽  
pp. 395-403
Author(s):  
Abbas Ghaffari Habib ◽  
Seyed Hadi Khatami

In Bahar County (Iran), rivers are among the important sources of water for the agricultural sector. Therefore, this research evaluated the parameters of temperature, pH, Total Dissolved Solids (TDS), turbidity, nitrate, total phosphate, dissolved oxygen (DO), Biological Oxygen Demand (BOD5), and fecal coliform at five stations for five months (from February 2015 to June 2015) to determine water quality in the rivers. Based on this evaluation, the NSFWQI index was calculated and, finally, the routes of the rivers were zoned. The best water quality was recorded at Station Number 3 with the NSFWQI Value of 80 in January, and the worst at Station Number 5 (latgah) with the NSFWQI Value of 37 in June. Based on the mean NSFWQI indices, water quality was Medium at Stations Number 1, 2, and 4, good at Station Number 3, and bad at Station number 5.


2018 ◽  
Vol 52 (4) ◽  
pp. 19-31
Author(s):  
Christopher Buzzelli ◽  
Zhiqiang Chen ◽  
Peter Doering ◽  
Amanda Kahn

Abstract Coastal water bodies are impacted by watershed alterations, increased population density, modifications to inlets and shorelines, climatic periodicity, and increases in external material loads. Estuaries such as Lake Worth Lagoon (LWL) in south Florida possess all these attributes. The LWL watershed extends from the southeastern portion of Lake Okeechobee through Palm Beach County, where it meets the lagoon. Palm Beach County Department of Environmental Resources Management recognizes the social and ecological importance of the ~36 km lagoon and aims to maintain suitable water and habitat quality for all stakeholders. Recent declines and shifts of seagrass distribution along the lagoon prompted a step toward better understanding the water quality patterns of the system. In support of these efforts, this study assessed bathymetry, inflow, flushing, and water quality attributes (chlorophyll a, salinity, total nitrogen, total phosphorus, total suspended solids, turbidity) using data collected along a series of 14 midlagoon stations from 2007 to 2015. Salinity in the North Segment was higher and less variable because of proximity to Palm Beach Inlet. Although concentrations of chlorophyll a, total nitrogen, and total phosphorus correlated with freshwater inflow, turbidity and total suspended solids were not. Fast flushing of the lagoon on a scale of days likely precludes water quality issues common to many estuaries with higher resident times. However, the combination of landscape-scale water management, a shoreline that is almost 70% modified by hard structures, and changes in essential nearshore habitats, introduces new levels of uncertainty to both the understanding and management of LWL. From this study, increased knowledge of relationships among water quality parameters and their spatial and temporal variability in LWL provides points of reference from which targeted studies can be developed to explore links between environmental parameters and responses of key organisms in this unique system.


2019 ◽  
Vol 31 ◽  
Author(s):  
Jéssica Nayara de Carvalho Leite ◽  
Vanessa Becker

Abstract Aim The aim of this study was to analyze the water quality of a tropical, semi-arid reservoir after a reflooding. In terms of impact on water quality after a drought event, it is expected that there will be improvements with the reflooding. Less algal biomass, increased water transparency, decreased turbidity and low nutrient concentration. Methods This study was performed in a tropical, semi-arid man-made lake (Dourado Reservoir), during an extended drought period. This study consisted of a comparison of three distinct periods determined by water accumulation. The limnological variables, including water transparency, turbidity, electrical conductivity, pH, total phosphorus, soluble reactive phosphorus, and chlorophyll-a were analyzed. A principal component analysis (PCA) was also performed to verify the patterns of the variables in relation to the sample units in the studied periods. Results After water renewal, there was an expressive reduction in chlorophyll-a. Electrical conductivity, pH, and turbidity variables also reduced after the reflooding, indicating an improvement in water quality. There was no reduction in total phosphorus and soluble reactive phosphorus after the reflooding compared to the previous periods. Conclusions The significant reduction in algal biomass after reflooding in Dourado indicates water quality improvement in terms of eutrophication due to the change of the trophic state from eutrophic to mesotrophic.


2004 ◽  
Vol 49 (9) ◽  
pp. 321-328 ◽  
Author(s):  
P. Piriou ◽  
E.D. Mackey ◽  
I.H. Suffet ◽  
A. Bruchet

Chlorinous flavors at the tap are the leading cause of customers' complaints and dissatisfaction with drinking water. To characterize consumer perception and acceptance to chlorinous tastes, extensive taste testing was performed with both trained panelists and average consumers. Taste testing with trained panelists showed that chlorine perception is underestimated by disinfectant flavor thresholds reported in the literature. However, trained panelists significantly overestimate the average consumer's ability to perceive chlorine. In addition, consumer perception seems to be influenced by the chlorination practices of the country they live in. Among water quality characteristics that may influence chlorine perception, temperature was not found to induce any significant change. The influence of total dissolved solids (TDS) on chlorine perception remains unclear and, as reported elsewhere, background tastes such as musty, may significantly impact chlorine threshold.


Sign in / Sign up

Export Citation Format

Share Document