Synthesis of Liquefied Petroleum Gas (LPG) Sensor based on Nanostructure Zinc Oxide using Chemical Bath Deposition (CBD) Methods

2012 ◽  
Vol 1 (1) ◽  
pp. 14-21 ◽  
Author(s):  
Muhammad Iqbal ◽  
◽  
Brian Yuliarto ◽  
Nugraha ◽  
◽  
...  
2014 ◽  
Vol 602-603 ◽  
pp. 871-875
Author(s):  
Yen Pei Fu ◽  
Jian Jhih Chen

In this study, ZnO films, prepared by Chemical Bath Deposition (CBD), are applied as the conductive layers for thin film solar cells. Zinc acetate is used as a source of zinc, and different proportions of ammonia solution are added and well mixed. The growth of zinc oxide films in reaction solutions is taken place at 80°C and then heated to 500°C for one hour. In this study, the different ammonia concentrations and deposition times is controlled. The thin film structure is Hexagonal structure, which is determined by X-ray diffraction spectrometer (XRD) analysis. Scanning electron microscopy (SEM) is used as the observation of surface morphology, the bottom of the film is the interface where the heterogeneous nucleation happens. With the increase of deposition time, there were a few attached zinc oxide particles, which is formed by homogeneous nucleation. According to UV / visible light (UV / Vis) absorption spectrometer transmittance measurements and the relationship between/among the incident wavelength, it can be converted to the energy gaps (Eg), which are about 3.0 to 3.2eV, by using fluorescence spectroscopy analysis. The emission of zinc oxide films has two wavelengths which are located on 510nm and 570nm. According to Based on the all analytic results, the ammonia concentration at 0.05M, and the deposition time is 120 minutes, would obtain the conditions of ZnO films which is more suitable for applications of conductive layer material in thin film solar cell.


2015 ◽  
Vol 123 (1437) ◽  
pp. 329-334 ◽  
Author(s):  
Takahiro MORITA ◽  
Shintaro UENO ◽  
Eiji HOSONO ◽  
Haoshen ZHOU ◽  
Manabu HAGIWARA ◽  
...  

2017 ◽  
Vol 704 ◽  
pp. 788-794 ◽  
Author(s):  
Sanjay A. Gawali ◽  
Satish. A. Mahadik ◽  
F. Pedraza ◽  
C.H. Bhosale ◽  
Habib M. Pathan ◽  
...  

BIBECHANA ◽  
2018 ◽  
Vol 16 ◽  
pp. 145-153
Author(s):  
Guna Nidha Gnawali ◽  
Shankar P Shrestha ◽  
Khem N Poudyal ◽  
Indra B Karki ◽  
Ishwar Koirala

Gas sensors are devices that can convert the concentration of an analytic gas into an electronic signal. Zinc oxide (ZnO) is an important n-type metal oxide semiconductor which has been utilized as gas sensor for several decades. In this work, ZnO nanostructured films were synthesized by a hydrothermal route from ZnO seeds and used as a liquefied petroleum gas (LPG) sensor. At first ZnO seed layers were deposited on glass substrates by using spin coating method, then ZnO nanostructured were grown on these substrates by using hydrothermal growth method for different time duration. The effect of growth time and seed layers of ZnO nanostructured on its structural, optical, and electrical properties was studied. These nanostructures were characterized by X-ray diffraction, scanning electron microscopy, optical spectroscopy, and four probes sheet resistance measurement unit. The sensing performances of the synthetic ZnO nanostructures were investigated for LPG.XRD showed that all the ZnO nanostructures were hexagonal crystal structure with preferential orientation. SEM reviled that the size of nanostructure increased with increase in growth time. Band gap and sheet resistance for ZnO nanostructured thin film decreased with increase in growth time. ZnO nanostructured thin film showed high sensitivity towards LPG gas. The sensitivity of the film is observed to increase with increase in no of seed layers as well as growth time. The dependence of the LPG sensing properties on the different growth time of ZnO nanostructured was investigated. The sensing performances of the film were investigated by measured change in sheet resistance under expose to LPG gas. BIBECHANA 16 (2019) 145-153


2019 ◽  
Vol 30 (14) ◽  
pp. 13593-13603 ◽  
Author(s):  
Jagjeevan Ram ◽  
R. G. Singh ◽  
Fouran Singh ◽  
Vikas Kumar ◽  
Vishnu Chauhan ◽  
...  

2014 ◽  
Vol 548-549 ◽  
pp. 196-200 ◽  
Author(s):  
Katherine M. Emphasis ◽  
Reynaldo M. Vequizo ◽  
Rolando T. Canditato ◽  
Majvell Kay G. Odarve ◽  
Filchito Renè G. Bagsican ◽  
...  

Zinc oxide (ZnO) on silica modified polyaniline (SM-PANI) was prepared via chemical bath deposition and in situ polymerization. The optical characteristics of the nanocomposites were investigated using ultraviolet-visible (UV-Vis) spectroscopy. The bands showed higher absorbance in the visible region. Fourier transform infrared (FTIR) spectroscopy revealed that there is an interaction between SM-PANI and ZnO.


Sign in / Sign up

Export Citation Format

Share Document