zinc oxide film
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 23)

H-INDEX

21
(FIVE YEARS 2)

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 195
Author(s):  
Htet Su Wai ◽  
Chaoyang Li

Aluminum-doped zinc oxide film was deposited on a glass substrate by mist chemical vapor deposition method. The influence of different aluminum doping ratios on the structural and optical properties of zinc oxide film was investigated. The XRD results revealed that the diffraction peak of (101) crystal plane was the dominant peak for the deposited AZO films with the Al doping ratios increasing from 1 wt % to 3 wt %. It was found that the variation of AZO film structures was strongly dependent on the Al/Zn ratios. The intertwined nanosheet structures were obtained when Zn/O ratios were greater than Al/O ratios with the deposition temperature of 400 °C. The optical transmittance of all AZO films was greater than 80% in the visible region. The AZO film deposited with Al doping ratio of 2 wt % showed the highest photocatalytic efficiency between the wavelength of 475 nm and 700 nm, with the high first-order reaction rate of 0.004 min−1 under ultraviolet radiation. The mechanism of the AZO film influenced by aluminum doping ratio during mist chemical vapor deposition process was revealed.


2022 ◽  
Vol 130 (2) ◽  
pp. 242
Author(s):  
Л.В. Григорьев ◽  
А.А. Семенов ◽  
А.В. Михайлов

Presents the results of the study of the structural, optical and photo luminescent properties of the thin films ZnO on LiNbO3 substrate. The results of X-ray structural analysis of a zinc oxide film synthesized on a single-crystal LiTaO3 substrate and on a KU-1 quartz substrate are presented. Present the transmission spectra, reflection spectra and the spectral dependence of zinc oxide thin films on substrate LiTaO3 and the structure of ZnO-SiO2 in the ultraviolet and visible spectral ranges.


Vacuum ◽  
2021 ◽  
pp. 110557
Author(s):  
Yen-Sheng Lin ◽  
Shao-Hwa Hu ◽  
Cheng-Wei Chen ◽  
Shui-Hsiang Su ◽  
Hang Dai ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4423
Author(s):  
Grégory Barbillon

Surface-enhanced Raman spectroscopy (SERS) is commonly employed as an analysis or detection tool of biological and chemical molecules. Recently, an alternative section of the SERS field has appeared, called photo-induced enhanced Raman spectroscopy (PIERS). This PIERS effect is based on the production of the oxygen vacancies (V0) in metal-oxide semiconductor thin-film (or other structures) by irradiation with UV light, thus enabling a Raman signal enhancement of chemical molecules through charge transfer processes between this photo-irradiated semiconductor film (or other structures) and these chemical molecules via metallic nanoparticles deposited on this photo-irradiated substrate. The PIERS technique can enable studying the dynamics of the oxygen vacancies under ambient and operando conditions compared to conventional tools of analysis. In this paper, we present the results obtained on the formation and healing rates of surface oxygen vacancies (V0) in a highly crystalline ZnO film investigated by the PIERS effect, and we compare these results to the literature in order to study the effect of the crystallinity on these formation and healing rates of V0 in a ZnO film.


2021 ◽  
Vol 12 ◽  
pp. 766-774
Author(s):  
Rafal Pietruszka ◽  
Bartlomiej S Witkowski ◽  
Monika Ozga ◽  
Katarzyna Gwozdz ◽  
Ewa Placzek-Popko ◽  
...  

Today, silicon solar cells (amorphous films and wafer-based) are a main source of green energy. These cells and their components are produced by employing various technologies. Unfortunately, during the production process, chemicals that are harmful for the environment and for human life are used. For example, hydrofluoric acid is used to texture the top electrode to improve light harvesting. In this work, and also in recent ones, we report a way to obtain 3D textures on the top electrode by using zinc oxide nanorods. The efficiency of a textured solar cell structure is compared with the one obtained for a planar zinc oxide/silicon structure. The present results show the possibility to produce efficient solar cells on a relatively thin 50 μm thick silicon substrate. Solar cells with structured top electrodes were examined by numerous measuring techniques. Scanning electron microscopy revealed a grain-like morphology of the magnesium-doped zinc oxide film. The size of the grains is closely related to the structure of the nanorods. The external quantum efficiency of the cells was measured. The obtained solar cell shows response in a wide spectral range from ultraviolet to infrared. Current–voltage and current–voltage–temperature measurements were performed to evaluate basic photovoltaic parameters. At room temperature, the cells efficiency equals to 9.1% for textured structures and 5.4% for planar structures, respectively. The work, therefore, describes an environmentally friendly technology for PV architecture with surface textures increasing the efficiency of PV cells.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 522
Author(s):  
Shiben Hu ◽  
Kuankuan Lu ◽  
Honglong Ning ◽  
Rihui Yao ◽  
Yanfen Gong ◽  
...  

In this work, we performed a systematic study of the physical properties of amorphous Indium–Gallium–Zinc Oxide (a-IGZO) films prepared under various deposition pressures, O2/(Ar+O2) flow ratios, and annealing temperatures. X-ray reflectivity (XRR) and microwave photoconductivity decay (μ-PCD) measurements were conducted to evaluate the quality of a-IGZO films. The results showed that the process conditions have a substantial impact on the film densities and defect states, which in turn affect the performance of the final thin-film transistors (TFT) device. By optimizing the IGZO film deposition conditions, high-performance TFT was able to be demonstrated, with a saturation mobility of 8.4 cm2/Vs, a threshold voltage of 0.9 V, and a subthreshold swing of 0.16 V/dec.


2021 ◽  
Vol 78 (4) ◽  
pp. 307-314
Author(s):  
Dae Geon Ryu ◽  
Gyu Jin Choi ◽  
Rajneesh Kumar Mishra ◽  
Jin Seog Gwag

Sign in / Sign up

Export Citation Format

Share Document