scholarly journals MEKANISME KERJA MESIN SHREDDER DAN ANALISIS KEGAGALAN PADA OPERASI PROSES PENGOLAHAN LIMBAH RADIOAKTIF PADAT MATERIAL TERKONTAMINASI

2021 ◽  
Vol 18 (1) ◽  
pp. 1
Author(s):  
Ajrieh Setyawan ◽  
Hendro Hendro ◽  
Purwanta Purwanta

MEKANISME KERJA MESIN SHREDDER DAN ANALISIS KEGAGALAN PADA OPERASI PROSES PENGOLAHAN LIMBAH RADIOAKTIF PADAT MATERIAL TERKONTAMINASI. Mesin Shredder adalah mesin pencacah atau penghancur, dalam penerapannya di Pusat Teknologi Limbah Radioaktif (PTLR) mesin shredder digunakan untuk mencacah limbah radioaktif padat material terkontaminasi yang memiliki dimensi besar. Limbah radioaktif padat seperti jerigen, drum High-density polyethylene (HDPE), drum korosi dan lainnya. Tujuan akhir dari kegiatan ini adalah untuk memberikan informasi terkait alat shredder dan mengetahui hubungan antara mekanisme kerja proses pengoperasi mesin shredder, serta analisis kegagalan dalam proses pengolahan limbah radioaktif padat material terkontaminasi. Metode yang digunakan meliputi pengoperasi alat, pengamatan dan analisis kegagalan operasi alat. Hasil kegiatan diperoleh bahwa kapasitas produksi operasi mesin shredder sebesar 288 kg/jam untuk material Drum HDPE. Untuk menjaga agar operasi mesin dapat berjalan dengan baik diperlukan perawatan secara berkala. Analisis kegagalan dalam proses operasi alat shredder dipengaruhi oleh : operator, sistem operasi mesin, metode operasi, dan material bahan yang diolah. 

2003 ◽  
Vol 774 ◽  
Author(s):  
Susan M. Rea ◽  
Serena M. Best ◽  
William Bonfield

AbstractHAPEXTM (40 vol% hydroxyapatite in a high-density polyethylene matrix) and AWPEX (40 vol% apatite-wollastonite glass ceramic in a high density polyethylene matrix) are composites designed to provide bioactivity and to match the mechanical properties of human cortical bone. HAPEXTM has had clinical success in middle ear and orbital implants, and there is great potential for further orthopaedic applications of these materials. However, more detailed in vitro investigations must be performed to better understand the biological interactions of the composites and so the bioactivity of each material was assessed in this study. Specifically, the effects of controlled surface topography and ceramic filler composition on apatite layer formation in acellular simulated body fluid (SBF) with ion concentration similar to those of human blood plasma were examined. Samples were prepared as 1 cm × 1 cm × 1 mm tiles with polished, roughened, or parallel-grooved surface finishes, and were incubated in 20 ml of SBF at 36.5 °C for 1, 3, 7, or 14 days. The formation of a biologically active apatite layer on the composite surface after immersion was demonstrated by thin-film x-ray diffraction (TF-XRD), environmental scanning electron microscopy (ESEM) imaging and energy dispersive x-ray (EDX) analysis. Variations in sample weight and solution pH over the period of incubation were also recorded. Significant differences were found between the two materials tested, with greater bioactivity in AWPEX than HAPEXTM overall. Results also indicate that within each material the surface topography is highly important, with rougher samples correlated to earlier apatite formation.


Sign in / Sign up

Export Citation Format

Share Document